A theoretical model for the estimation of fatigue crack length of tensile-shear spot welded specimen is developed which incorporates the natural frequency and mode variation. The model is based on the concept that the propagation of cracks causes a release of strain energy, which is related to the structural modal shape. The effect of the structural mode shape and crack location is also explained. The model, experimental, and finite element results indicate that the existence of cracks cause the reduction of natural frequencies and change of natural modes, and that the mode shape of the structure and crack location will affect the magnitude of the change of these dynamic variables. The predictions of the model are compared with the experimental data and finite element analysis results and agreement is found to be consistent.

1.
Kang
,
H.
, and
Barkey
,
M. E.
, 1999, “
Fatigue life estimation of spot welded joints using an interpolation/extrapolation technique
,”
Int. J. Fatigue
0142-1123,
21
, pp.
769
777
.
2.
Barkey
,
M. E.
,
Kang
,
H.
, and
Lee
,
Y.
, 2001, “
Failure modes of single resistance spot welded joints subjected to combined fatigue loading
,”
Int. J. Mater. Prod. Technol.
0268-1900,
16
, pp.
510
527
.
3.
Kang
,
H.
,
Barkey
,
M. E.
, and
Lee
,
Y.
, 2000, “
Evaluation of multiaxial spot weld fatigue parameters for proportional loading
,”
Int. J. Fatigue
0142-1123,
22
, pp.
691
702
.
4.
Zhang
,
S.
1999, “
Stress intensities derived from stresses around a spot weld
,”
Int. J. Fract.
0376-9429,
99
, pp.
239
257
.
5.
Sheppard
,
S. D.
, 1993, “
Estimation of fatigue propagation life in resistance spot welds
,”
Advances in Fatigue Lifetime Prediction Techniques: Second Volume
, ASTM STP 1211,
American Society for Testing and Materials
, Philadelphia, pp.
169
185
.
6.
Pal
,
K.
, and
Cronin
,
D. L.
, 1995, “
Static and Dynamic Characteristics of Spot Welded Sheet Metal Beams
,”
J. Eng. Ind.
0022-0817,
117
, pp.
317
322
.
7.
Vlahopoulos
,
N.
,
Zhao
,
X.
, and
Allen
,
T.
, 1999, “
An Approach for Evaluating Power Transfer Coefficients for Spot-Welded Joint in an Energy Finite Element Formulation
,”
J. Sound Vib.
0022-460X,
220
(
1
), pp.
135
154
.
8.
Liu
,
Y
,
Lim
,
T. C.
,
Wang
,
Y.
, 2001, “
Vibration Characteristics of Welded Beam and Plate Structures
,”
Noise Control Eng. J.
0736-2501,
49
(
6
), pp.
265
275
.
9.
Wang
,
Y.
, and
Lim
,
T. C.
, 2001, “
An Experimental and Computational Study of the Dynamic Characteristics of Spot-Welded Sheet Metal Structures
,” SAE Technical Report, No.2001-01-0431, Detroit, Michigan.
10.
Shang
,
De-Guang
,
Barkey
,
M. E.
,
Wang
,
Y.
, and
Lim
,
T. C.
, 2003, “
Fatigue damage and dynamic natural frequency response of spot-welded joints
,” SAE, MI, No.2003-01-0695.
11.
Shang
,
De-Guang
,
Barkey
,
M. E.
,
Wang
,
Y.
, and
Lim
,
T. C.
, 2003, “
Effect of Fatigue damage on dynamic response frequency of spot-welded joints
,”
Int. J. Fatigue
0142-1123,
25
(
4
), pp.
311
316
.
12.
Wang
,
G.
, and
Barkey
,
M. E.
, 2004, “
Experimental investigation of fatigue crack and its influence on dynamic response characteristic of spot welded specimen
,”
Exp. Mech.
0014-4851,
44
, pp.
512
521
13.
Christides
,
S.
, and
Barr
,
A. D. S.
, 1984, “
One-dimensional theory of cracked Bernoulli–Euler beams
,”
Int. J. Mech. Sci.
0020-7403,
126
(
11-12
), pp.
639
648
.
14.
Yokoyama
,
T.
, and
Chen
,
M. C.
, 1998, “
Vibration analysis of edge-cracked beams using a line-spring model
,”
Eng. Fract. Mech.
0013-7944,
59
(
3
), pp.
403
409
.
15.
Gudmundson
,
P.
, 1982, “
Eigenfrequency changes of structures due to cracks, notches or other geometrical changes
,”
J. Mech. Phys. Solids
0022-5096,
30
(
5
), pp.
339
353
.
16.
Ostachowicz
,
W. M.
, and
Krawczuk
,
M.
, 1991, “
Analysis of the effect of cracks on the natural frequencies of a cantilever beam
,”
J. Sound Vib.
0022-460X,
150
(
2
), pp.
191
201
.
17.
Neogy
,
S.
, and
Ramamurti
,
V.
, 1997, “
Effect of partial depth cracks on the natural frequency of twisted blades: A 3D finite element analysis
,”
J. Sound Vib.
0022-460X,
205
(
1
), pp.
33
55
.
18.
Shen
,
M.-H. H.
, and
Pierre
,
C.
, 1990, “
Natural modes of Bernoulli–Euler Beams with symmetric cracks
,”
J. Sound Vib.
0022-460X,
138
(
1
), pp.
115
134
.
19.
Dimarogonas
,
A. D.
, 1996, “
Vibration of cracked structures: A state of the art review
,”
Eng. Fract. Mech.
0013-7944,
55
(
5
), pp.
831
857
.
20.
Gasch
,
R.
, 1993, “
A survey of the dynamic behavior of a simple rotating shaft with a transverse crack
,”
J. Sound Vib.
0022-460X,
160
(
2
), pp.
313
332
.
21.
Ismail
,
F.
,
Ibrahim
,
A.
, and
Martin
,
H. R.
, 1990, “
Identification of fatigue cracks from vibration testing
,”
J. Sound Vib.
0022-460X,
140
(
2
), pp.
305
317
.
22.
Mcguire
,
S. M.
,
Fine
,
M. E.
, and
Achenbach
,
J. D.
, 1995, “
Crack detection by resonant frequency measurements
,”
Metall. Mater. Trans. A
1073-5623,
26A
, pp.
1123
1127
.
23.
Owolabi
,
G. M.
,
Swamidas
,
A. S. J.
, and
Seshadri
,
R.
, 2003, “
Crack detection in beams using changes in frequencies and amplitudes of frequency response functions
,”
J. Sound Vib.
0022-460X,
265
, pp.
1
22
.
24.
Kim
,
Jeong-Tae
,
Ryu
,
Yeon-Sun
,
Cho
,
Hyun-Man
, and
Stubbs
,
Norris
, 2003, “
Damage identification in beam-type structures: Frequency-based method vs. mode-shape-based method
,”
Eng. Struct.
0141-0296,
25
, pp.
57
67
.
25.
Blevins
,
R. D.
, 1979,
Formulas for natural frequency and mode shape
, Van Nostrand Reinhold, NY.
26.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. E.
, 2000, “
The stress analysis of cracks handbook
,” 3rd ed.,
ASME Press
.
27.
Anderson
,
T. L.
,
Fracture mechanics fundamentals and applications
, 2nd ed.,
CRC Press
, Boca Raton, FL.
28.
Cooper
,
J. F.
, and
Smith
,
R. A.
, 1985, “
The measurement of fatigue cracks at spot welds
,”
Int. J. Fatigue
0142-1123,
7
(
3
), pp.
137
140
.
You do not currently have access to this content.