A micromechanical model of damaged elasto-inelastic behavior is proposed to predict the plastic fatigue life for fcc metallic polycrystals under multiaxial loading paths. This model is expressed in the time-dependent plasticity for a small strain assumption. In order to generalize and then to increase the model applicability (with respect to other works of the author) in describing the cyclic stress-strain evolution during plastic fatigue, it is therefore assumed that a damage variable initiates and then evolves at the grain level where the phenomenon of the localized plastic deformation occurs. The associated thermodynamic force of the damage variable is determined as a total granular energy (elastic and inelastic). The transition of the elastic strain from the single to the polycrystal, which is classically performed by averaging procedures in this type of modeling, is modified due to the coupling of such a strain with damage. The developed model is tested under different multiaxial cyclic loading situations (tension-compression and tension-torsion with different out-of-phase angles). The effects the loading paths and the grains aggregate type on the fatigue life are appropriately investigated. It is demonstrated that the model can correctly describe the overall and local damaged behavior of polycrystals.

1.
Neumann, P., 1983, “Fatigue,” in Physical Metallurgy, R. W. Cahn and P. Haasen, eds., Elsevier, Amsterdam.
2.
Pineau, A., 1979, “Sollicitation Cyclique des Alliages Durcis par Pre´cipitation, Dislocations et De´formation Plastique,” Yravals, Les Editions de Physique, pp. 383–393.
3.
Chaboche
,
J. L.
,
1977
, “
Viscoplastic Constitutive Equations for Description of Cyclic and Anisotropic Behavior of Metals
,”
Bull. Acad. Pol. Sci., Ser. Sci. Tech.
,
25
, pp.
33
42
.
4.
Krajcinovic
,
D.
, and
Fonseka
,
G. U.
,
1981
, “
The Continuous Damage Mechanics of Brittle Materials, Part I and II
,”
ASME J. Appl. Mech.
,
48
, pp.
809
824
.
5.
Cordebois, J. P., and Sidoroff, F., 1979, “Damage Induced Elastic Anisotropy,” Colloque Euromech 115, Villard de Lans, France.
6.
Lemai^tre, J., and Chaboche, J. L., 1985, “Me´canique des Mate´riaux Solides,” Dunod, Bordas, Paris.
7.
Simo
,
J. C.
, and
Ju
,
J. W.
,
1987
, “
Strain- and Stress-Based Continuum Damage Models—Part I and II
,”
Int. J. Solids Struct.
,
23
, pp.
821
841
.
8.
Ju
,
J. W.
,
1989
, “
On Energy-Based Coupled Elastoplastic Damage Theories: Constitutive Modeling and Computational Aspects
,”
Int. J. Solids Struct.
,
25
, p.
803
803
.
9.
Chaboche
,
J. L.
,
1993
, “
Development of Continuum Damage Mechanics for Elastic Solids Sustaining Anisotropic and Unilateral Damage
,”
Int. J. Damage Mech.
,
3
, p.
311
311
.
10.
Chow
,
C. L.
, and
Wei
,
Y.
,
1999
, “
Constitutive Modeling of Material Damage for Fatigue Failure Prediction
,”
Int. J. Damage Mech.
,
8
, pp.
355
375
.
11.
Abdul-Latif
,
A.
, and
Saanouni
,
K.
,
1994
, “
Damaged Anelastic Behavior of FCC Poly-Crystalline Metals With Micromechanical Approach
,”
Int. J. Damage Mech.
,
3
, p.
237
237
.
12.
Saanouni
,
K.
, and
Abdul-Latif
,
A.
,
1996
, “
Micromechanical Modeling of Low Cycle Fatigue Under Complex Loadings—Part I: Theoretical Formulation
,”
Int. J. Plast.
,
12
, p.
1111
1111
.
13.
Abdul-Latif
,
A.
, and
Saanouni
,
K.
,
1996
, “
Micromechanical Modeling of Low Cycle Fatigue Under Complex Loadings—Part II: Applications
,”
Int. J. Plast.
,
12
, p.
1123
1123
.
14.
Abdul-Latif
,
A.
, and
Saanouni
,
K.
,
1997
, “
Effect of Some Parameters on the Plastic Fatigue Behavior With Micromechanical Approach
,”
Int. J. Damage Mech.
,
6
, p.
433
433
.
15.
Abdul-Latif
,
A.
,
Ferney
,
V.
, and
Saanouni
,
K.
,
1999
, “
Fatigue Damage of Waspaloy Under Complex Loading
,”
ASME J. Eng. Mater. Technol.
,
121
, p.
278
278
.
16.
Saanouni
,
K.
,
Forster
,
Ch.
, and
Benhatira
,
F.
,
1994
, “
On the Anelastic Flow With Damage
,”
Int. J. Damage Mech.
,
3
, p.
140
140
.
17.
Franciosi, P., 1978, “Plasticite´ a` froid des monocristaux C.F.C.: Etude du Durcissement Latent,” The`se d’e´tat, Univ. of Paris XIII.
18.
Poubanne, P., Nouailhas, D., and Cailletaud, G., 1988, “Modeling of Viscoplastic Anisotropic Behavior of Single Crystals,” Proc. Mecamat on Inelastic Behavior of Solids: Modeling and Utilization, Besanc¸on, France, 30 August–1 September.
19.
Berveiller
,
M.
, and
Zaoui
,
A.
,
1979
, “
An Extension of the Self-Consistent Scheme to Plasticity Flowing Polycrystals
,”
J. Mech. Phys. Solids
,
26
, p.
325
325
.
20.
Pilvin, P., 1990, “Approches Multie´chelles pour la Pre´vision du Comportement Ane´lastique des Me´taux,” The`se de Doctorat, Univ. Paris VI.
21.
Abdul-Latif
,
A.
,
2004
, “
Pertinence of the Grains Aggregate Type on the Self-Consistent Model Response
,”
Int. J. Solids Struct.
,
41
, pp.
305
322
.
22.
Ferney, V., 1994, “Etude de l’Ecrouissage Cyclique sous Sollicitations Complexes,” The`se de Doctorat de l’Universite´ de Technologie de Compie`gne.
23.
Abdul-Latif
,
A.
,
2004
, “
A Comparison of Two Self-Consistent Models to Predict the Cyclic Behavior of Polycrystals
,”
ASME J. Eng. Mater. Technol.
,
126
, pp.
62
69
.
24.
Abdul-Latif
,
A.
,
Clavel
,
M.
,
Ferney
,
V.
, and
Saanouni
,
K.
,
1994
, “
On the Modeling of Non-Proportional Cyclic Plasticity of Waspaloy
,”
ASME J. Eng. Mater. Technol.
,
116
, pp.
35
44
.
You do not currently have access to this content.