This paper describes the implementation and modification of a previously proposed unified viscoplastic constitutive model to simulate the behavior of a Yttria Stabilized Zirconia plasma sprayed thermal barrier coating. The model was recast for use in finite strain situations and modified to have a more physically acceptable non-associated flow rule. Temperature dependent material constants were found for a specific material using a novel approach based on Genetic Algorithms.

1.
Cheng
,
J.
,
Jordan
,
E. H.
,
Barber
,
B.
, and
Gell
,
M.
,
1998
, “
Thermal/Residual Stress in a Thermal Barrier Coating System
,”
Acta Mater.
,
46
, pp.
5839
5850
.
2.
Freborg
,
A. M.
,
Ferguson
,
B. L.
,
Brindley
,
W. J.
, and
Petrus
,
G. J.
,
1998
, “
Modeling Oxidation Induced Stresses in Thermal Barrier Coatings
,”
Mater. Sci. Eng., A
,
A245
(
3
), pp.
182
190
.
3.
Chang
,
G. C.
,
Phucharoen
,
W.
, and
Miller
,
R. A.
,
1987
, “
Behavior of Thermal Barrier Coatings for Advanced Gas Turbine Blades
,”
Surf. Coat. Technol.
,
30
, pp.
13
28
.
4.
DeMasi, J. T., Sheffler, K. D. and Ortiz, M., 1989, “Thermal Barrier Coating Life Prediction Model Development,” NASA CR 182230, Glenn Research Center, Cleveland, OH.
5.
Stouffer, D. C., and Dame, T. L., 1996, Inelastic Deformation of Metals, John Wiley & Sons, pp. 134–136.
6.
Janosik
,
L. A.
, and
Duffy
,
S. F.
,
1998
, “
A Viscoplastic Constitutive Theory for Monolithic Ceramics-I
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
155
161
.
7.
ABAQUS Theory Manual, 1999, Version 5.8, Hibbitt, Karlsson & Sorensen, Pawtucket, RI.
8.
ANSYS Theory Reference 001099, Ninth ed., 1999, SASIP, Inc.
9.
Atluri
,
S. N.
,
1984
, “
On Constitutive Relations at Finite Strain: Hypo-Elasticity and Elasto-Plasticity with Isotropic or Kinematic Hardening
,”
Comput. Methods Appl. Mech. Eng.
,
43
, pp.
137
171
.
10.
Willam, K. J., and Warnke, E. P., 1975, “Constitutive Models for the Triaxial Behavior of Concrete,” Proc. Intl. Assoc. Bridge Structl. Engrs., Report 19, Section III, Zurich, pp. 1–30.
11.
Chen, W. F., 1982, Plasticity in Reinforced Concrete, McGraw-Hill.
12.
Jordan
,
E. H.
,
Shi
,
S.
, and
Walker
,
K. P.
,
1993
, “
The Viscoplastic Behavior of Hastelloy-X Single Crystal
,”
Int. J. Plast.
,
9
, pp.
119
139
.
13.
Jordan
,
E. H.
, and
Walker
,
K. P.
,
1992
, “
A Viscoplastic Model for Single Crystals
,”
ASME J. Eng. Mater. Technol.
,
114
, pp.
19
25
.
14.
Holland
,
J. H.
, 1992, “Genetic Algorithms,” Sci. Am., pp. 66–72.
15.
Holland, J. H., 1992, Adaptation in Natural and Artificial Systems, MIT Press.
16.
Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley.
17.
Carroll, D. A., 1996, “Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers,” Developments in Theoretical and Applied Mechanics, Vol. XVIII, H. Wilson, R. Batra, C. Bert, A. Davis, R. Schapery, D. Stewart, and F. Swinson, eds., School of Engineering, University of Alabama, pp. 411–424.
18.
Carroll, D. A., 1996, “Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers,” Developments in Theoretical and Applied Mechanics, Vol. XVIII, H. Wilson, R. Batra, C. Bert, A. Davis, R. Schapery, D. Stewart, and F. Swinson, eds., School of Engineering, University of Alabama, pp. 411–424.
19.
Meier
,
S. M.
,
Nissley
,
D. M.
,
Sheffler
,
K. D.
, and
Cruse
,
T. A.
,
1992
, “
Thermal Barrier Coating Life Prediction Model Development
,”
ASME J. Eng. Gas Turbines Power
,
114
, pp.
258
263
.
20.
Mills
,
L. L.
, and
Zimmerman
,
R. M.
,
1970
, “
Compressive Strength of Plain Concrete Under Multiaxial Loading Conditions
,”
ACI Journal, Proceedings
,
67
(
10
), pp.
802
807
.
21.
Kupfer
,
H.
,
Hilsdorf
,
H. K.
, and
Ru¨sch
,
H.
,
1969
, “
Behavior of Concrete Under Biaxial Stresses
,”
ACI Journal, Proceedings
,
66
(
8
), pp.
656
666
.
22.
Chinn, J., and Zimmerman, R. M., 1965, “Behavior of Plain Concrete Under Various High Triaxial Compression Loading Conditions,” Air Force Weapons Lab. Tech. Rep. WL TR 64-163 (AD 468460), Albuquerque, New Mexico.
23.
Nemat-Nasser
,
S.
,
1983
, “
On Finite Plastic Flow of Crystalline Solids and Geomaterials
,”
ASME J. Appl. Mech.
,
105
, pp.
1114
1126
.
24.
Nishiguchi
,
I.
,
Sham
,
T.-L.
, and
Krempl
,
E.
,
1990
, “
A Finite Deformation Theory of Viscoplasticity Based on Overstress: Part I—Constitutive Equations and Part II—Finite Element Implementation and Numerical Experiments
,”
ASME J. Appl. Mech.
,
57
, pp.
548
552
and 553–561.
25.
Hughes
,
T. J. R.
, and
Winget
,
J.
,
1980
, “
Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large Deformation Analysis
,”
Int. J. Opt. Sens.
,
15
, pp.
1862
1867
.
26.
Lush
,
A. M.
,
Weber
,
G.
, and
Anand
,
L.
,
1989
, “
An Implicit Time-Integration Procedure for a Set of Internal Variable Constitutive Equations for Isotropic Elasto-Viscoplasticity
,”
Int. J. Plast.
,
5
, pp.
521
549
.
You do not currently have access to this content.