This paper describes the implementation and modification of a previously proposed unified viscoplastic constitutive model to simulate the behavior of a Yttria Stabilized Zirconia plasma sprayed thermal barrier coating. The model was recast for use in finite strain situations and modified to have a more physically acceptable non-associated flow rule. Temperature dependent material constants were found for a specific material using a novel approach based on Genetic Algorithms.
Issue Section:
Technical Papers
1.
Cheng
, J.
, Jordan
, E. H.
, Barber
, B.
, and Gell
, M.
, 1998
, “Thermal/Residual Stress in a Thermal Barrier Coating System
,” Acta Mater.
, 46
, pp. 5839
–5850
.2.
Freborg
, A. M.
, Ferguson
, B. L.
, Brindley
, W. J.
, and Petrus
, G. J.
, 1998
, “Modeling Oxidation Induced Stresses in Thermal Barrier Coatings
,” Mater. Sci. Eng., A
, A245
(3
), pp. 182
–190
.3.
Chang
, G. C.
, Phucharoen
, W.
, and Miller
, R. A.
, 1987
, “Behavior of Thermal Barrier Coatings for Advanced Gas Turbine Blades
,” Surf. Coat. Technol.
, 30
, pp. 13
–28
.4.
DeMasi, J. T., Sheffler, K. D. and Ortiz, M., 1989, “Thermal Barrier Coating Life Prediction Model Development,” NASA CR 182230, Glenn Research Center, Cleveland, OH.
5.
Stouffer, D. C., and Dame, T. L., 1996, Inelastic Deformation of Metals, John Wiley & Sons, pp. 134–136.
6.
Janosik
, L. A.
, and Duffy
, S. F.
, 1998
, “A Viscoplastic Constitutive Theory for Monolithic Ceramics-I
,” ASME J. Eng. Gas Turbines Power
, 120
, pp. 155
–161
.7.
ABAQUS Theory Manual, 1999, Version 5.8, Hibbitt, Karlsson & Sorensen, Pawtucket, RI.
8.
ANSYS Theory Reference 001099, Ninth ed., 1999, SASIP, Inc.
9.
Atluri
, S. N.
, 1984
, “On Constitutive Relations at Finite Strain: Hypo-Elasticity and Elasto-Plasticity with Isotropic or Kinematic Hardening
,” Comput. Methods Appl. Mech. Eng.
, 43
, pp. 137
–171
.10.
Willam, K. J., and Warnke, E. P., 1975, “Constitutive Models for the Triaxial Behavior of Concrete,” Proc. Intl. Assoc. Bridge Structl. Engrs., Report 19, Section III, Zurich, pp. 1–30.
11.
Chen, W. F., 1982, Plasticity in Reinforced Concrete, McGraw-Hill.
12.
Jordan
, E. H.
, Shi
, S.
, and Walker
, K. P.
, 1993
, “The Viscoplastic Behavior of Hastelloy-X Single Crystal
,” Int. J. Plast.
, 9
, pp. 119
–139
.13.
Jordan
, E. H.
, and Walker
, K. P.
, 1992
, “A Viscoplastic Model for Single Crystals
,” ASME J. Eng. Mater. Technol.
, 114
, pp. 19
–25
.14.
Holland
, J. H.
, 1992, “Genetic Algorithms,” Sci. Am., pp. 66–72.15.
Holland, J. H., 1992, Adaptation in Natural and Artificial Systems, MIT Press.
16.
Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley.
17.
Carroll, D. A., 1996, “Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers,” Developments in Theoretical and Applied Mechanics, Vol. XVIII, H. Wilson, R. Batra, C. Bert, A. Davis, R. Schapery, D. Stewart, and F. Swinson, eds., School of Engineering, University of Alabama, pp. 411–424.
18.
Carroll, D. A., 1996, “Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers,” Developments in Theoretical and Applied Mechanics, Vol. XVIII, H. Wilson, R. Batra, C. Bert, A. Davis, R. Schapery, D. Stewart, and F. Swinson, eds., School of Engineering, University of Alabama, pp. 411–424.
19.
Meier
, S. M.
, Nissley
, D. M.
, Sheffler
, K. D.
, and Cruse
, T. A.
, 1992
, “Thermal Barrier Coating Life Prediction Model Development
,” ASME J. Eng. Gas Turbines Power
, 114
, pp. 258
–263
.20.
Mills
, L. L.
, and Zimmerman
, R. M.
, 1970
, “Compressive Strength of Plain Concrete Under Multiaxial Loading Conditions
,” ACI Journal, Proceedings
, 67
(10
), pp. 802
–807
.21.
Kupfer
, H.
, Hilsdorf
, H. K.
, and Ru¨sch
, H.
, 1969
, “Behavior of Concrete Under Biaxial Stresses
,” ACI Journal, Proceedings
, 66
(8
), pp. 656
–666
.22.
Chinn, J., and Zimmerman, R. M., 1965, “Behavior of Plain Concrete Under Various High Triaxial Compression Loading Conditions,” Air Force Weapons Lab. Tech. Rep. WL TR 64-163 (AD 468460), Albuquerque, New Mexico.
23.
Nemat-Nasser
, S.
, 1983
, “On Finite Plastic Flow of Crystalline Solids and Geomaterials
,” ASME J. Appl. Mech.
, 105
, pp. 1114
–1126
.24.
Nishiguchi
, I.
, Sham
, T.-L.
, and Krempl
, E.
, 1990
, “A Finite Deformation Theory of Viscoplasticity Based on Overstress: Part I—Constitutive Equations and Part II—Finite Element Implementation and Numerical Experiments
,” ASME J. Appl. Mech.
, 57
, pp. 548
–552
and 553–561.25.
Hughes
, T. J. R.
, and Winget
, J.
, 1980
, “Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large Deformation Analysis
,” Int. J. Opt. Sens.
, 15
, pp. 1862
–1867
.26.
Lush
, A. M.
, Weber
, G.
, and Anand
, L.
, 1989
, “An Implicit Time-Integration Procedure for a Set of Internal Variable Constitutive Equations for Isotropic Elasto-Viscoplasticity
,” Int. J. Plast.
, 5
, pp. 521
–549
.Copyright © 2003
by ASME
You do not currently have access to this content.