We propose a model where a lattice structure is used within an interface layer of finite thickness. An evolution problem is set and studied to analyze the structural changes within the interface during the deformation. Numerical examples are presented for the case of a triangular lattice structure.
Issue Section:
Technical Papers
1.
Benveniste
, Y.
, and Miloh
, T.
, 2001
, “Imperfect Soft and Stiff Interfaces in Two-Dimensional Elasticity
,” Mech. Mater.
, 33
, pp. 309
–323
.2.
Benveniste
, Y.
, and Chen
, T.
, 2001
, “On the Saint-Venant Torsion of Composite Bars With Imperfect Interfaces
,” Proc. R. Soc. London, Ser. A
, 457
, pp. 231
–255
.3.
Benveniste
, Y.
, 1999
, “On the Decay of End Effects in Conduction Phenomena: A Sandwich Strip With Imperfect Interfaces of Low or High Conductivity
,” J. Appl. Phys.
, 86
, pp. 1273
–1279
.4.
Klarbring
, A.
, and Movchan
, A. B.
, 1998
, “Asymptotic Modelling of Adhesive Joints
,” Mech. Mater.
, 28
, pp. 137
–145
.5.
Klarbring
, A.
, Avila-Pozos
, O.
, and Movchan
, A. B.
, 1991
, “Asymptotic Model of Orthotropic Highly Inhomogeneous Layered Structure
,” Mech. Mater.
, 31
, pp. 101
–115
.6.
Lipton
, R.
, 1998
, “On Existence of Energy Minimizing Configurations for Mixtures of Two Imperfectly Bonded Conductors
,” Control Cybern.
, 27
, pp. 217
–234
.7.
Lipton
, R.
, and Talbot
, D. R. S.
, 2001
, “Bounds for the Effective Conductivity of a Composite With an Imperfect Interface
,” Proc. R. Soc. London, Ser. A
, 457
, pp. 1501
–1517
.8.
Bigoni
, D.
, Ortiz
, M.
, and Needleman
, A.
, 1997
, “Effect of Interfacial Compliance on Bifurcation of a Layer Bonded to a Substrate
,” Int. J. Solids Struct.
, 34
, pp. 4305
–4326
.9.
Matsukawa
, H.
, and Fukuyama
, H.
, 1994
, “Theoretical Study of Friction: One-Dimensional Clean Surfaces
,” Phys. Rev. B
, 49
(24
), pp. 17286
–17292
.10.
Maz’ya
, V. G.
, and Ha¨nler
, M.
, 1993
, “Approximation of Solutions to the Neumann Problem in Disintegrating Domains
,” Math. Nachr.
, 162
, pp. 261
–278
.11.
Movchan
, A. B.
, 1999, “Contributions of V. G. Maz’ya to Analysis of Singularly Perturbed Boundary Value Problems,” Operator Theory: Advances and Applications, 109, pp. 201–212.12.
Peierls
, R. E.
, 1940
, “The Size of a Dislocation
,” Proc. Phys. Soc.
, 52
, pp. 34
–37
.13.
Nabarro
, F. R. N.
, 1947
, “Dislocations in a Simple Cubic Lattice
,” Proc. Phys. Soc.
, 59
, pp. 256
–272
.14.
Bullough, R., Movchan, A. B., and Willis, J. R., 1991, “The Peierls Stress for Various Dislocation Morphologies,” Materials Modelling: From Theory to Technology, Oxford, pp. 73–78.
15.
Movchan
, A. B.
, Bullough
, R.
, and Willis
, J. R.
, 1998
, “Stability of a Dislocation: Discrete Model
,” Euro. Jnl of Applied Mathematics
, 9
, pp. 373
–396
.16.
Needleman
, A.
, and Van der Giessen
, E.
, 2001
, “Discrete Dislocation and Continuum Descriptions of Plastic Flow
,” Mater. Sci. Eng., A
, 309
, pp. 1
–13
.17.
Jones
, J. E.
, 1924
, “On the Determination of Molecular Fields
,” Proc. R. Soc. London, Ser. A
, 106
, pp. 463
–477
.18.
Sorensen
, M. R.
, Jacobsen
, K. W.
, and Stoltze
, P. W.
, 1996
, “Simulations of Atomic-Scale Sliding Friction
,” Phys. Rev. B
, 53
(4
), pp. 2101
–2113
.Copyright © 2003
by ASME
You do not currently have access to this content.