We propose a model where a lattice structure is used within an interface layer of finite thickness. An evolution problem is set and studied to analyze the structural changes within the interface during the deformation. Numerical examples are presented for the case of a triangular lattice structure.

1.
Benveniste
,
Y.
, and
Miloh
,
T.
,
2001
, “
Imperfect Soft and Stiff Interfaces in Two-Dimensional Elasticity
,”
Mech. Mater.
,
33
, pp.
309
323
.
2.
Benveniste
,
Y.
, and
Chen
,
T.
,
2001
, “
On the Saint-Venant Torsion of Composite Bars With Imperfect Interfaces
,”
Proc. R. Soc. London, Ser. A
,
457
, pp.
231
255
.
3.
Benveniste
,
Y.
,
1999
, “
On the Decay of End Effects in Conduction Phenomena: A Sandwich Strip With Imperfect Interfaces of Low or High Conductivity
,”
J. Appl. Phys.
,
86
, pp.
1273
1279
.
4.
Klarbring
,
A.
, and
Movchan
,
A. B.
,
1998
, “
Asymptotic Modelling of Adhesive Joints
,”
Mech. Mater.
,
28
, pp.
137
145
.
5.
Klarbring
,
A.
,
Avila-Pozos
,
O.
, and
Movchan
,
A. B.
,
1991
, “
Asymptotic Model of Orthotropic Highly Inhomogeneous Layered Structure
,”
Mech. Mater.
,
31
, pp.
101
115
.
6.
Lipton
,
R.
,
1998
, “
On Existence of Energy Minimizing Configurations for Mixtures of Two Imperfectly Bonded Conductors
,”
Control Cybern.
,
27
, pp.
217
234
.
7.
Lipton
,
R.
, and
Talbot
,
D. R. S.
,
2001
, “
Bounds for the Effective Conductivity of a Composite With an Imperfect Interface
,”
Proc. R. Soc. London, Ser. A
,
457
, pp.
1501
1517
.
8.
Bigoni
,
D.
,
Ortiz
,
M.
, and
Needleman
,
A.
,
1997
, “
Effect of Interfacial Compliance on Bifurcation of a Layer Bonded to a Substrate
,”
Int. J. Solids Struct.
,
34
, pp.
4305
4326
.
9.
Matsukawa
,
H.
, and
Fukuyama
,
H.
,
1994
, “
Theoretical Study of Friction: One-Dimensional Clean Surfaces
,”
Phys. Rev. B
,
49
(
24
), pp.
17286
17292
.
10.
Maz’ya
,
V. G.
, and
Ha¨nler
,
M.
,
1993
, “
Approximation of Solutions to the Neumann Problem in Disintegrating Domains
,”
Math. Nachr.
,
162
, pp.
261
278
.
11.
Movchan
,
A. B.
, 1999, “Contributions of V. G. Maz’ya to Analysis of Singularly Perturbed Boundary Value Problems,” Operator Theory: Advances and Applications, 109, pp. 201–212.
12.
Peierls
,
R. E.
,
1940
, “
The Size of a Dislocation
,”
Proc. Phys. Soc.
,
52
, pp.
34
37
.
13.
Nabarro
,
F. R. N.
,
1947
, “
Dislocations in a Simple Cubic Lattice
,”
Proc. Phys. Soc.
,
59
, pp.
256
272
.
14.
Bullough, R., Movchan, A. B., and Willis, J. R., 1991, “The Peierls Stress for Various Dislocation Morphologies,” Materials Modelling: From Theory to Technology, Oxford, pp. 73–78.
15.
Movchan
,
A. B.
,
Bullough
,
R.
, and
Willis
,
J. R.
,
1998
, “
Stability of a Dislocation: Discrete Model
,”
Euro. Jnl of Applied Mathematics
,
9
, pp.
373
396
.
16.
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2001
, “
Discrete Dislocation and Continuum Descriptions of Plastic Flow
,”
Mater. Sci. Eng., A
,
309
, pp.
1
13
.
17.
Jones
,
J. E.
,
1924
, “
On the Determination of Molecular Fields
,”
Proc. R. Soc. London, Ser. A
,
106
, pp.
463
477
.
18.
Sorensen
,
M. R.
,
Jacobsen
,
K. W.
, and
Stoltze
,
P. W.
,
1996
, “
Simulations of Atomic-Scale Sliding Friction
,”
Phys. Rev. B
,
53
(
4
), pp.
2101
2113
.
You do not currently have access to this content.