This paper addresses the convergence characteristics of an iterative solution scheme of the Neumann-type useful for obtaining homogenized mechanical material properties from a representative volume element. The analysis is based on Eshelby’s idea of “equivalent inclusions” and, within the context of mechanical stress/strain analysis, allows modeling of elastically highly heterogeneous bodies with the aid of discrete Fourier transforms. Within the iterative scheme the proof of convergence depends critically upon the choice of an appropriate, auxiliary stiffness matrix, which also determines the speed of convergence. Mathematically speaking it is based on Banach’s fixpoint theorem and only results in sufficient convergence conditions. However, all cases of elastic heterogeneity that are of practical importance are covered and some evidence is provided that other choices of auxiliary stiffness may result in faster convergence even if this cannot explicitly be shown within the theoretical framework chosen.

1.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
, pp.
357
372
.
2.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
,
29
, pp.
143
150
.
3.
Hashin
,
Z.
,
1964
, “
Theory of Mechanical Behavior of Heterogeneous Media
,”
Appl. Mech. Rev.
,
17
(
1
), pp.
1
9
.
4.
Christensen, R. M., 1979, Mechanics of Composite Materials, Krieger Publishing Company, Melbourne, FL.
5.
Lukassen
,
D.
,
Persson
,
L.-E.
, and
Wall
,
P.
,
1995
, “
Some Engineering and Mathematical Aspects of the Homogenization Method
,”
Composites Eng.
,
5
(
5
), pp.
519
531
.
6.
Christensen
,
R. M.
,
1979
, “
Solutions for Effective Shear Properties in Three-Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
,
27
, pp.
315
330
.
7.
Holmbom
,
A.
,
Persson
,
L.-E.
, and
Svanstedt
,
N.
,
1992
, “
A Homogenization Procedure for Computing Effective Moduli and Microstresses in Elastic Composite Materials
,”
Composites Eng.
,
2
(
4
), pp.
249
259
.
8.
Michel
,
J. C.
,
Moulinec
,
H.
, and
Suquet
,
P.
,
1999
, “
Effective Properties of Composite Materials with Periodic Microstructure: A Computational Approach
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–4
), pp.
109
143
.
9.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
,
2001
, “
Linear Thermoelastic Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
,
68
(
5
), pp.
697
707
.
10.
Moulinec, H., and Suquet, P., 1995, “A FFT-based Numerical Method for Computing the Mechanical Properties of Composites from Images of their Microstructures,” IU-TAM Symposium on Microstructure-Property Interactions in Composite Materials, pp. 235–246.
11.
Moulinec
,
H.
, and
Suquet
,
P.
,
1998
, “
A Numerical Method for Computing the Overall Response of Nonlinear Composites with Complex Microstructure
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp.
69
94
.
12.
Michel
,
J. C.
,
Moulinec
,
H.
, and
Suquet
,
P.
,
1999
, “
Effective Properties of Composite Materials with Periodic Microstructure: A Computational Approach
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–4
), pp.
109
143
.
13.
Mu¨ller
,
W. H.
, 1996, “Mathematical vs. Experimental Stress Analysis of Inhomogeneities in Solids,” J. Phys. IV, Colloque C1, Supple´ment au J. Phys. III 6, pp. C1-139–C1-148.
14.
Brown, C. M., and Mu¨ller, W. H., 2001, “On the Rapid Determination of Effective Properties of Composite Materials: Discrete Fourier Transforms Versus Finite Element Methods,” Comput. Mater. Sci., submitted.
15.
Chen
,
L.-Q.
,
Wang
,
Y.
, and
Khachaturyan
,
A. G.
,
1992
, “
Kinetics of Tweed and Twin Formation During an Ordering Transition in a Substitutional Solid Solution
,”
Philos. Mag. Lett.
,
65
(
1
), pp.
15
23
.
16.
Dreyer
,
W.
, and
Mu¨ller
,
W. H.
,
2000
, “
A Study of the Coarsening in Pb/Sn Solders
,”
Int. J. Solids Struct.
,
37
(
28
), pp.
3841
3871
.
17.
Mura, T., 1987, Micromechanics of Defects in Solids, Second revised edition, Martinus Nijhoff Publishers, Dordrecht, The Netherlands.
18.
Porter, D., and Stirling, D. S. G., 1990, Integral Equations: A Practical Treatment from Spectral Theory to Applications, Cambridge University Press, Cambridge.
19.
Moiseiwitsch, B. L., 1977, Integral Equations, Longman Group Ltd., New York.
20.
Bronstein, I. N., and Semendjajew, K. A., 1976, Taschenbuch der Mathematik, Verlag Harri Deutsch, 16. Auflage, Zu¨rich, Frankfurt/Main, Thun.
21.
Herrmann
,
K. P.
,
Mu¨ller
,
W. H.
, and
Neumann
,
S.
,
1999
, “
Linear and Elastic-Plastic Fracture Mechanics Revisited by use of Fourier Transforms-Theory and Application
,”
Comput. Mater. Sci.
,
16
, pp.
186
196
.
22.
Heuser, H. G., 1982, Functional Analysis, John Wiley and Sons, New York.
23.
Kreyszig, E. 1978, Introductory Functional Analysis with Applications, John Wiley & Sons, New York.
24.
Latella
,
B. A.
, and
Liu
,
T.
, 2000, “Performance Characteristics of Porous Alumina in Ceramic Structures,” J. Aust. Ceram. Soc., 36(2), pp. 13–21.
You do not currently have access to this content.