During the martensitic transformation in elastic-plastic materials, the local transformation strain as well as the plastic flow inside austenite are strongly related with the crystallographic orientation of the austenitic lattice. Two mechanisms involved in these materials, i.e., plasticity by dislocation motion and martensitic phase formation are coupled through kinematical constraints so that the lattice spin of the austenitic grains is different from the one due to classical slip. In this work, the lattice spin ω˙eA of the austenitic grains is related with the slip rate on the slip systems of the two phases, γ˙A and γ˙M, the evolution of the martensite volume fraction f˙ and the overall rotation rate Ω˙ of the grains. This new relation is integrated in a micromechanical model developed for unstable austenite in order to predict the evolution of the austenite texture during TRansformation Induced Plasticity (TRIP). Results for the evolution of the lattice orientation during martensitic transformation are compared with experimental data obtained by X-ray diffraction on a 304 AISI steel.

1.
Wechsler
,
M. S.
,
Lieberman
,
D. S.
, and
Read
,
T. A.
, 1953, “On the Theory of the Formation of Martensite,” AIME Trans. J. Metals, 197, pp. 1503–1515.
2.
Sabar
,
H.
,
Buisson
,
M.
, and
Berveiller
,
M.
,
1991
, “
The Inhomogeneous and Plastic Inclusion Problem With Moving Boundary
,”
Int. J. Plast.
,
7
, p.
759
759
.
3.
Bunge
,
H. J.
,
1968
,
Phys. Status Solidi
,
26
, pp.
167
172
.
4.
Cherkaoui
,
M.
,
Berveiller
,
M.
, and
Lemoine
,
X.
,
2000
, “
Couplings Between Plasticity and Martensitic Phase Transformation: Overall Behavior of Polycrystalline TRIP Steels
,”
Int. J. Plast.
,
16
, p.
1215
1215
.
5.
Kurdjumov, G., and Sachs, G., 1930, Z. Physik., 64, p. 325.
6.
Nishiyama
,
Z.
,
1934
,
Sci. Rep. Tohoku Univ.
,
23
, p.
637
637
.
7.
Greninger
,
B. A.
, and
Troaino
,
A. R.
,
1940
,
Trans. AIME
,
40
, p.
307
307
.
8.
Liu
,
W. P.
, and
Bunge
,
H. J.
,
1991
, “
Variant Selection in the Martensitic Transformation of a Fe-30 percent Ni Alloy With Cube Texture
,”
Mater. Lett.
,
10
(
7-8
), pp.
336
343
.
9.
Sum
,
M.
,
Butron-Guille´n
,
M. P.
,
Da Costa Viana
,
C. S.
, and
Jonas
,
J. J.
,
1998
, “
Variant Selection During the γ-to-α’ Transformation of a Fe-30 percent Ni Alloy
,”
Mater. Sci. Forum
,
273-275
, pp.
157
162
.
10.
Wittridge
,
N. J.
, and
Jonas
,
J. J.
,
2000
, “
The Austenite-to-Martensite Transformation in Fe-30 percent Ni After Deformation by Simple Shear
,”
Acta Mater.
,
48
, pp.
2737
2749
.
11.
Greenwood
,
G. W.
, and
Johnson
,
R. H.
,
1965
, “
The Deformation of Metals Under Small Stresses During Phase Transformation
,”
Proc. R. Soc. London, Ser. A
,
283
, p.
403
403
.
12.
Leblond
,
J. B.
,
Devaux
,
J.
, and
Devaux
,
J. C.
,
1989
, “
Mathematical Modeling of Transformation Plasticity in Steels, I: Case of Ideal-Plastic Phases
,”
Int. J. Plast.
,
5
, pp.
551
572
.
13.
Patel
,
J. R.
, and
Cohen
,
M.
,
1953
, “
Criterion for the Action of Applied Stress in the Martensitic Transformation
,”
Acta Mater.
,
1
, pp.
531
538
.
14.
Wittridge
,
N. J.
,
Jonas
,
J. J.
, and
Root
,
J. H.
,
2001
, “
A Dislocation-Based Model for Variant Selection During the γ-to-α’ Transformation
,”
Metal. Mat. Trans.
,
32A
, pp.
889
901
.
15.
Magee, C. L., 1966, “Transformation Kinetics, Microplasticity and Aging of Martensite in Fe-31 Ni,” Ph.D. thesis, Carnegie Institute of Technology, Pittsburgh, PA.
16.
Berveiller, M., and Zaoui, A., 1975, “Me´thodes self-consistentes en me´canique des solides he´te´roge`nes,” in Comportement rhe´ologiques et structures des mate´riaux, C. Huet, A. Zaoui, eds., p. 175.
17.
Lipinski
,
P.
, and
Berveiller
,
M.
,
1989
, “
Elastoplasticity of Micro-Inhomogeneous Metals at Large Strains
,”
Int. J. Plast.
,
5
, pp.
149
172
.
18.
Lipinski
,
P.
,
Berveiller
,
M.
,
Reubrez
,
E.
, and
Morreale
,
J.
,
1995
, “
Transition Theories of Elastic-Plastic Deformation of Metallic Polycrystals
,”
Arch. Appl. Mech.
,
65
, pp.
291
311
.
19.
Bargui, H., Sidhom, H., and Tourki, Z., 2000, “Martensite Induite: incidence sur le comportement en e´crouissage et sur la limite de formage de l’acier inoxydable auste´nitique AISI 304,” Mate´riaux & Techniques, 11-12, pp. 31–41.
20.
Maeder, G., Ramon, Y., Thorel, G., and Barralis, J., 1975, “Dosage par radiocristallographie X de l’auste´nite re´siduelle dans des aciers 16NCD13 ce´mente´s,” Me´moires Scientifiques Revue Me´tallurgie, pp. 397–405.
You do not currently have access to this content.