Computer experiments were performed to investigate behavior of mesoscopic stress responses in a simulated polycrystalline material sample containing a fairly large number of constituent grains for a number of polycrystalline materials. Kro¨ner-Kneer structure-based model was adopted and refined to provide an efficacious numerical approach to local mesoscopic stresses. The approach is developed on a concept of average fields of grains for arbitrarily polygon-shaped grains. Three criteria were proposed for classifying speculated material structure weaknesses in all simulated material samples. It is found that material structure weaknesses can be well correlated by defined “Orientation-Geometry Factor” and “Relevance Parameter.” Not only grain-orientation but also grain geometry exerts strong influences on mesoscopic stress distribution, hence the distribution of material structure weaknesses in simulated polycrystalline material samples. Computer experiments lead to correlated relationships that links material structure weaknesses with local microstructure, and a database for discrimination of material structure weaknesses in the material samples. The homogenization of materials with locally anisotropic microstructure is also discussed.

1.
Sunder
,
S. S.
, and
Wu
,
M. S.
,
1990
, “
Crack nucleation due to elastic anisotropy in polycrystalline ice
,”
Cold Regions Sci. Tech.
,
18
, pp.
29
47
.
2.
Ghahremani
,
F.
, and
Hutchinson
,
J. W.
,
1990
, “
Three-dimensional effects in microcrack nucleation in brittle polycrystals
,”
J. Am. Ceram. Soc.
,
73
, pp.
1548
1554
.
3.
Lebensohn
,
R. A.
, and
Tome´
,
C. N.
,
1993
, “
A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys
,”
Acta Metall. Mater.
,
41
, No.
9
, pp.
2611
2624
.
4.
Teng
,
N. J.
, and
Lin
,
T. H.
,
1995
, “
Elastic anisotropy effect of crystals on polycrystal fatigue crack initiation
,”
ASME J. Eng. Mater. Technol.
,
117
, No.
10
, pp.
470
477
.
5.
Dunn
,
M. L.
, and
Ledbetter
,
H.
,
1997
, “
Elastic-plastic behavior of textured short-fiber composites
,”
Acta Metall.
,
45
, No.
8
, pp.
3327
3340
.
6.
Lu
,
Z. K.
, and
Weng
,
G. J.
,
1998
, “
A self consistent model for the stress-strain behavior of shape-memory alloy polycrystals
,”
Acta Mater.
,
46
, No.
15
, pp.
5423
5433
.
7.
Gonza´lez
,
C.
, and
Llorca
,
J.
,
2000
, “
A self-consistent approach to the elasto-plastic behavior of two phase materials including damage
,”
J. Mech. Phys. Solids
,
48
, pp.
675
692
.
8.
Wu
,
M. S.
, and
Guo
,
J.
,
2000
, “
Analysis of a sector crack in a three-dimensional Voronoi polycrystal with microstructural stresses
,”
ASME J. Appl. Mech.
,
67
, pp.
50
58
.
9.
Kocks, U. F., Tome´, C. N., and Wenk, H.-R., 1998, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press.
10.
Okabe, A., Boots, B., and Sugihara, K., 1992, Spatial Tessellations Concepts and Applications of Voronoi Diagrams, J. Wiley, New York.
11.
Roe
,
R.-J.
, and
Krigbaum
,
W. R.
,
1964
, “
Description of crystallite orientation in polycrystalline materials having fiber texture
,”
J. Chem. Phys.
,
40
, No.
9
, pp.
2608
2615
.
12.
Nye, J. F., 1985, Physical Properties of Crystals: Their Representation By Tensors and Matrices, Oxford Science Publications Ltd., Oxford, UK.
13.
Eshelby
,
J. D.
,
1957
, “
The determination of elastic field of an ellipsoid and related problems
,”
Proc. R. Soc. London, Ser. A
,
241A
, pp.
376
396
.
14.
Eshelby
,
J. D.
,
1959
, “
The elastic field outside an elliptical inclusion
,”
Proc. R. Soc. London, Ser. A
,
252A
, pp.
561
569
.
15.
Eshelby, J. D., 1961, “Elastic inclusions and inhomogeneities,” Prog. in Solid Mech., Vol. 2, I. N. Snedden, and R. Hill, eds., North-Holland, Amsterdam, pp. 89–140.
16.
Kro¨ner
,
E.
,
1958
, “
Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls
,”
Z. Phys., Band
,
151
, pp.
504
518
.
17.
Kro¨ner
,
E.
,
1961
, “
Zur plastischen verformung des vielkristalls
,”
Acta Metall.
,
9
, pp.
155
161
.
18.
Kneer
,
G.
,
1965
, “
Uber die Berechnung der Elastizita¨tsmoduln vielkristalliner Aggregate mit Textur
,”
Phys. Status Solidi
,
9
, pp.
825
838
.
19.
Morris
,
P.
,
1970
, “
Elastic constants of polycrystals
,”
Int. J. Eng. Sci.
,
8
, pp.
49
61
.
20.
Bunge
,
H. J.
et al.
,
2000
, “
Elastic properties of polycrystals—influence of texture and stereology
,”
J. Mech. Phys. Solids
,
48
, pp.
29
66
.
21.
Aernoudt, E. et al., 1993, Deformation and textures of Metals at Large Strain, Ser. eds., R. W. Cahn, P. Haasen, and E. J. Kra¨mer, VCH, Weinheim.
22.
Van Houtte, P., 1996, in Proceedings of the 11th International Conference on Texture of Materials, Sept., Xian, China, Vol. eds., Z. Liang, L. Zuo, and Y. Chu, Vol. 1, pp. 236, International Academic, Beijing.
23.
Raabe, D., 1998, Computational Materials Science, Wiley-VCH, New York.
24.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1988
, “
Microcracking in ceramics induced by thermal expansion or elastic anisotropy
,”
J. Am. Ceram. Soc.
,
71
, No.
3
, pp.
157
166
.
25.
Oritz
,
M.
, and
Suresh
,
S.
,
1993
, “
Statistical properties of residual stresses and intergranular fracture in ceramic materials
,”
ASME J. Appl. Mech.
,
60
, No.
3
, pp.
77
84
.
26.
Zisman
,
A. A.
, and
Rybin
,
V. V.
,
1998
, “
Mesoscopic stress field arising from the grain interaction in plastically deformed polycrystals
,”
Acta Mater.
,
46
, pp.
457
464
.
27.
Nozaki
,
H.
, and
Taya
,
M.
,
1997
, “
Elastic fields in a polygon-shaped inclusion with uniform eigenstrains
,”
ASME J. Appl. Mech.
,
64
, No.
9
, pp.
495
502
.
28.
Jasiuk
,
I.
,
Chen
,
J.
, and
Thorpe
,
M. F.
,
1994
, “
Elastic moduli of two dimensional materials with polygonal and elliptic holes
,”
Appl. Mech. Rev.
,
47
, pp.
18
28
.
29.
Jasiuk
,
I.
,
1995
, “
Various vis-a-vis rigid inclusions: elastic moduli of materials with polygonal inclusions
,”
Int. J. Solids Struct.
,
32
, pp.
407
422
.
30.
Rodin
,
G. J.
,
1996
, “
Eshelby’s inclusion problem for polygons and polyhedra
,”
J. Mech. Phys. Solids
,
44
, No.
12
, pp.
1977
1995
.
31.
Wu
,
L. Z.
, and
Du
,
S. Y.
,
1999
, “
The elastic field with a hemispherical inclusion
,”
Proc. R. Soc. London, Ser. A
,
455A
, pp.
879
891
.
32.
Mura, T. 1999, “A theory of fracture with a polygonal shape crack,” Small Fatigue Cracks: Mechanics and Mechanisms, eds. by K. S. Ravichandran, R. O. Ritchie and Y. Murakami, Elsevier Science, London, pp. 3–15.
33.
Ru
,
C. Q.
,
1999
, “
Analytic solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-plane
,”
ASME J. Appl. Mech.
,
66
, No.
2
, pp.
315
322
.
34.
Waldvogel
,
J.
,
1979
, “
The Newtonian potential of homogeneous polyhedra
,”
Z. Angew. Math. Phys.
,
30
, pp.
388
398
.
35.
Simmons, G., and Wang, H., 1970, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd. edn., The MIT Press, Cambridge, MA.
36.
Zeng
,
X.-H.
, and
Ericsson
,
T.
,
1996
, “
Anisotropy of elastic properties in various aluminium-lithium sheet alloys
,”
Acta Mater.
,
44
, No.
5
, pp.
1801
1812
.
37.
Yang
,
S. W.
,
1985
, “
Elastic constants of a monocrystalline nickel-based superalloy
,”
Metall. Mater. Trans. A
,
16A
, pp.
661
665
.
38.
Bunge, H. J., 1982, Texture Analysis in Materials Science, Butterworths, London.
39.
Adams
,
B. L.
et al.
,
1987
, “
Description of orientation coherence in polycrystalline materials
,”
Acta Metall.
,
35
, No.
12
, pp.
2935
2946
.
40.
Pospiech
,
J.
,
Lucke
,
K.
, and
Sztwiertnia
,
K.
,
1993
, “
Orientation distribution and orientation correlation functions for description of microstructure
,”
Acta Metall.
,
41
, No.
1
, pp.
305
321
.
You do not currently have access to this content.