This paper first describes the effect of neutron irradiation on the thermomechanical behavior of stress-relieved Zircaloy-4 fuel tubes that have been analyzed after exposure to five different fluences ranging from nonirradiated material to high burnup. In the second part, a viscoplastic model is proposed to simulate, for different isotherms, 350°C<T<400°C, out-of-flux anisotropic mechanical behavior of the cladding tubes over the fluence range 0<ϕ<100s˙1024nm2E>1MeV. The model, identified for tests conducted at 350°C, has been validated from tests made at 380°C and 400°C. The model is capable of simulating strain hardening under internal pressure followed by a stress relaxation period, the loading producing an interaction between the pellet and cladding. Introduction of a state variable characterizing the damage caused by a bombardment with neutrons into the model has allowed us to simulate the irradiation-induced hardening and creep rate decrease, as well as the saturation noticed after two cycles of irradiation 45s˙1024nm2E>1MeV in a pressurized water reactor (PWR). Finally, the numerical simulations show the model is able to reproduce the totality of the thermomechanical experiments. [S0094-4289(00)00202-4]

1.
Baron, D., and Bouffioux, P., 1989, “Le Crayon Combustible des Re´acteurs a` Eau Pressurise´e de Grande Puissance,” Rapport EDF, HT M2/88-27.
2.
Higgy
,
R.
, and
Hammad
,
F. H.
,
1972
, “
Effect of Neutron Irradiation on the Tensile Properties of Zircaloy-2 and Zircaloy-4
,”
J. Nucl. Mater.
,
44
, pp.
215
277
.
3.
Northwood, D. O., 1977, “Irradiation Damage in Zirconium and its Alloys,” AT. Energy Review, p. 154.
4.
Franklin, D. G., 1982, “Zircaloy-4 Cladding Deformation During Power Reactor Irradiation,” ASTM-STP 754, pp. 235–267.
5.
Petterson, K., 1982, “An Evaluation of Irradiation Temperature on the Irradiation Hardening of Zircaloy,” Studvik Super-Ramp Project, SR 82/3.
6.
Baty
,
D. L.
,
Pavinick
,
W. A.
,
Dietrich
,
M. R.
,
Clevinger
,
G. S.
, and
Papazoglou
,
T. P.
,
1984
, “
Deformation Characteristics of Cold-Worked and Recrystallized Zircaloy-4 Cladding in Zirconium in the Nuclear Industry
,” 6th International Symposium,
ASTM-STP
,
824
,
306
339
.
7.
Yasuda, T., Nakatsuka, M., and Yamashita, K., 1987, “Deformation and Fracture Properties of Neutron-Irradiated Recrystallized Zircaloy-2 Cladding Under Uniaxial Tension,” Zirconium in the Nuclear Industry, VIIth Int. ASTM 939, pp. 734–747.
8.
Delobelle, P., Robinet, P., Bouffioux, P., Geyer, P., and Le Pichon, I., 1996, “A Unified Model to Describe the Anisotropic Viscoplastic Behavior of Zircaloy-4 Cladding Tubes,” Zirconium in the Nuclear Industry, 11th International Symposium, ASTM-STP 1295, pp. 373–393.
9.
Delobelle
,
P.
,
Robinet
,
P.
,
Geyer
,
P.
, and
Bouffioux
,
P.
,
1996
, “
A Model to Describe the Anisotropic Viscoplastic Behavior of Zircaloy-4 Tubes
,”
J. Nucl. Mater.
,
238
, pp.
135
162
.
10.
Van Swam
,
L. F.
,
Knorr
,
D. B.
,
Pelloux
,
R. M.
, and
Shewbridge
,
J. F.
,
1979
, “
Relationship between Contractile Strain Ratio R and Texture in Zirconium Alloy Tubing
,”
Metall. Trans. A
,
10
, p.
483
483
.
11.
Bouffioux. P., 1995, “An Experimental Method to Investigate the Anisotropic Viscoplastic Behavior of Zircaloy Cladding Tubes,” 11th International Symposium, ASTM-STP.
12.
Bouffioux, P., 1994, “Etude du Comportement en Plasticite´ des Tubes de Gainage en Zircaloy-4 Sous Sollicitations Biaxe´es,” Report DER-EDF A4/94/012A.
13.
CEA, Framatome, and EDF Cooperative program, 1995, Proprietary data.
14.
Beauregard, R., Clevinger, G. S., and Murty, K. L., 1977, “Effect of Annealing Temperature on the Mechanical Properties of Zircaloy-4 Cladding,” Proceedings of the SMIRT IV, paper C3/5.
15.
Murty, K. L., 1989, “Applications of Crystallographic Textures of Zirconium Alloys in Nuclear Industry,” Zirconium in the Nuclear Industry, VIIIth International Symposium, ASTM-STP 1023, p. 570.
16.
Yi
,
J. K.
,
Park
,
H. B.
,
Park
,
G. S.
, and
Lee
,
B. W.
,
1992
, “
Yielding and Dynamic Strain Aging Behavior of Zircaloy-4 Tube
,”
J. Nucl. Mater.
,
189
, pp.
353
353
.
17.
Prioul, C., 1995, “Le Vieillissement Dynamique Dans les Alliages de Zirconium: Consequences Sur Les Propriete´s Me´caniques,” SF2M, Journe´e d’Etudes Proprie´te´s-Microstructures-Les Edit, Physique, pp. 25–34.
18.
Murty, K. L., Clevinger, G. S., and Papazoglou, T. P., 1977, “Thermal Creep of Zircaloy-4 Cladding,” SMIRT IV, San Francisco, Aug. 15–19, paper C3/4.
19.
Matsuo
,
Y.
,
1987
, “
Thermal Creep of Zircaloy-4 Cladding Under Internal Pressure
,”
J. Nucl. Sci. Technol.
,
24
, No.
2
, pp.
111
119
.
20.
Lyashenko
,
V. S.
,
Bykov
,
V. N.
, and
Paulinov
,
L. B.
,
1959
,
Fiz. Met. Metalloved
,
8
, p.
362
362
.
21.
EPRI, B and W, 1983, “Cooperative Program on PWR Fuel Rod Performance,” NP 2848, Project 711-1.
22.
Franklin, D. G., Lucas, G. E., and Bement, A. L., 1983, “Creep of Zirconium Alloys in Nuclear Reactors,” ASTM STP 815, p. 35.
23.
Huang, P., Mahmood, T., and Adamson, R., 1996, “Effects of Thermomechanical Processing on In-Reactor Corrosion and Post-Irradiation Mechanical Properties of Zircaloy-2,” 11th International Symposium, ASTM-STP 1295, pp. 726–755.
24.
Pilvin, P., 1988, “Identification Des Parametres de Mode`les de Comportement,” Proceedings of Me`camat, International Seminar on Inelastic Behavior of Solids, Models and Utilization, pp. 155–164.
25.
Limba¨ck, M., and Anderson, T., 1996, “A Model for Analysis of the Effect of Final Annealing on the in- and out-of- Reactor Creep Behavior of Zircaloy Cladding,” ASTM-STP 1295, pp. 448–468.
26.
Matzke
,
H.
,
1993
, “
Radiation Damage in Nuclear Fuel Materials
,”
Solid State Phenomena
,
30–31
, pp.
355
366
.
You do not currently have access to this content.