In Part I [1] of this paper, Gurson’s mixed hardening plasticity model with strain and stress-controlled nucleations, was used in a large deformation finite element program to study the plastic flow and damage in the uniaxial compression of cylinders under sticking friction. Due to low stress triaxiality at the bulge of the cylinders, it was found that localization may occur before void coalescence. In this paper, necessary conditions of localizations are analyzed for the axial compression of porous cylinders under sticking friction. Shear band type of localization with a normal mode of fracture has been predicted for the majority of the cases studied. Various existing localization conditions and fracture criteria are assessed using the results from the simulation. The maximum shear stress at failure is approximately constant and a constant critical damage can not be found.

1.
Lee
J. H.
, and
Zhang
Y.
,
1994
, “
A Finite-Element Work-Hardening Plasticity Model of the Uniaxial Compression and Subsequent Failure of Porous Cylinders Including Effects of Void Nucleation and Growth Part I: Plastic Flow and Damage
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
116
, pp.
69
79
.
2.
Devaux
J.
,
Gelin
J. C.
,
Oudin
J.
, and
Ravalard
Y.
,
1984
, “
Theoretical Analysis and Experimental Applications of Barrelling and Folding in Cylinder Upsetting Tests
,”
Int. J. Mech. Sci.
, Vol.
26
, pp.
555
572
.
3.
Kudo
H.
, and
Aoi
K.
,
1967
, “
Effect of Compression Test Condition Upon Fracturing of a Medium Carbon Steel
,”
J. Japan Soc. Tech. Plasticity
, Vol.
8
, pp.
17
27
.
4.
Kobayashi
S.
,
1970
, “
Deformation Characteristics and Ductile Fracture of 1040 Steel in Simple Upsetting of Solid Cylinders and Rings
,”
ASME J. Engr. Ind.
, Vol.
92b
, pp.
391
399
.
5.
Kivivouri
S.
, and
Sulonen
M.
,
1978
, “
Formability Limits and Fracturing Modes of Uniaxial Compression Specimens
,”
CIRP Annals
, Vol.
27
, pp.
141
145
.
6.
Sowerby
R.
,
O’Reilly
I.
,
Chandrasekaran
N.
, and
Dung
N. L.
,
1984
, “
Materials Testing for Cold Forging
,”
ASME JOURNAL OP ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
106
, pp.
101
106
.
7.
Sowerby
R.
, and
Chandrasekaran
N.
,
1984
, “
The Cold Upsetting and Free Surface Ductility of Some Commercial Steels
,”
J. Applied Metalworking
, Vol.
3
, pp.
257
263
.
8.
Sowerby
R.
, and
Chandrasekaran
N.
,
1986
, “
The Prediction of Damage Accumulation when Upsetting AISI 1045 Steel Specimens, Based on McClintock’s Model
,”
Mater. Sci. Engr.
, Vol.
79
, pp.
27
35
.
9.
Lee
P. W.
, and
Kuhn
H. A.
,
1973
, “
Fracture in Cold Upset Forging—A Criterion and Model
,”
Metall. Trans.
, Vol.
4
, pp.
969
974
.
10.
Kuhn
H. A.
,
Lee
P. W.
, and
Erturk
T.
,
1973
, “
A Fracture Criterion for Cold Forming
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
95
, pp.
213
218
.
11.
Vujovic
V.
, and
Shabaik
A. H.
,
1986
, “
A New Workability Criterion for Ductile Metals
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
108
, pp.
245
249
.
12.
Cockcroft
M. G.
, and
Latham
D. J.
,
1968
, “
Ductility and Workability of Metals
,
J. Inst. Metals
, Vol.
96
, pp.
33
39
.
13.
Oyane
M.
,
1972
, “
Criteria of Ductile Fracture Strain
,”
Bull., JSME
, Vol.
15
, pp.
1507
1513
.
14.
McClintock
F. A.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
, Vol.
35
, pp.
363
371
.
15.
Lee, J. H., 1990, Final Report to NSF, MSM-8722786.
16.
Rudnicki
J. W.
, and
Rice
J. R.
,
1975
, “
Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
, Vol.
23
, pp.
371
394
.
17.
Ortiz
M.
,
Leroy
Y.
, and
Needleman
A.
,
1987
, “
A Finite Element Method for Localized Failure Analysis
,”
Computer Methods Appl. Mech. Eng.
, Vol.
61
, pp.
89
124
.
18.
Hartley
P.
,
Clift
S. E.
,
Salimi-Namin
J.
,
Sturgess
C. E. N.
, and
Pillinger
I.
,
1989
, “
The Prediction of Ductile Fracture Initiation in Metal Forming Using a Finite Element Method and Various Fracture Criteria
,”
Res. Mechanica
, Vol.
28
, pp.
269
293
.
19.
Rice
J. R.
, and
Tracey
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
, Vol.
17
, pp.
201
217
.
20.
Hill
R.
, “
On Discontinuous Plastic States, with Special Reference to Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
, Vol.
1
, pp.
19
30
.
21.
Ettouney
O.
, and
Hardt
D. E.
,
1983
, “
A Method for In-Process Failure Prediction in Cold Upset Forging
,”
ASME J. Engr. Ind.
, Vol.
105
, pp.
161
167
.
22.
Osakada, K., and Mori, K., 1978, “Prediction of Ductile Fracture in Cold Forging,” Annals of the CIRP, pp. 135–139.
23.
Tvergaard
V.
, and
Needleman
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
, Vol.
32
, pp.
157
169
.
24.
Becker
R.
,
Needleman
A.
,
Richmond
O.
, and
Tvergaard
V.
, “
Void Growth and Failure in Notched Bars
,”
J. Mech. Phys. Solids
, Vol.
36
, pp.
317
351
.
25.
Aoki
S.
,
Kishimoto
K.
,
Toshida
T.
, and
Sakata
M.
,
1987
, “
A Finite Element Study of the Near Crack Tip Deformation of a Ductile Material Under Mixed Mode Loading
,”
J. Mech. Phys. Solids
, Vol.
35
, pp.
431
455
.
26.
Needleman
A.
, and
Tvergaard
V.
,
1987
, “
An Analysis of Ductile Rupture Modes at a Crack Tip
,”
J. Mech. Phys. Solids
, Vol.
35
, pp.
151
183
.
27.
Thomason
P. F.
,
1969
, “
Tensile Plastic Instability and Ductile Fracture Criteria in Uniaxial Compression Tests
,”
Int. J. Mech. Sci.
, Vol.
11
, pp.
187
198
.
28.
Thomason
P. F.
,
1968
, “
The Use of Pure Aluminum as an Analogue for the History of Plastic Flow, in Studies of Ductile Fracture Criteria in Steel Compression Specimens
,”
Int. J. Mech. Sci.
, Vol.
10
, pp.
501
518
.
29.
Darvas
Z.
,
1985
, “
The Forming Limit and Fracture Mode in Cold Upsetting
,”
Mater. Sci. Engr.
, Vol.
70
, pp.
101
110
.
This content is only available via PDF.
You do not currently have access to this content.