Abstract

With regulatory scrutiny of medical devices on the rise, increased attention is being placed on the long-term safety and performance of permanent implants. State-of-the-art standards like ASTM F2477, Standard Test Methods forIn VitroPulsatile Durability Testing of Vascular Stents and Endovascular Prostheses, and ISO 25539-2, Cardiovascular Implants—Endovascular Devices—Part 2: Vascular Stents, for example, provide historical frameworks for empirically demonstrating adequate durability of vascular stents. Subsequent guidances have been published, which are gaining traction as complementary tools supporting the collective framework of long-term permanent implant understanding. ASTM F3211, Standard Guide for Fatigue-to-Fracture (FtF) Methodology for Cardiovascular Medical Devices, for example, outlines elegant methodologies for fatigue-to-fracture of cardiovascular medical devices. Some challenges that ensue, however, are apparent in exceptionally durable super-elastic alloys, like nitinol, where equipment limitations become rate limiting. Furthermore, once hyperphysiological loading levels are achieved, the subsequent challenge of fracture detection arises. Partnering with Dynatek Labs, Inc., Cook Medical presents a novel pulsatile fatigue testing platform capable of both applying hyperphysiological load levels, which induce fracture, as well as detecting fractures when they occur. Coupled with sophisticated statistical analysis projections, these pulsatile fatigue-to-fracture data align with cutting-edge standards like ASTM F3211 and provide confirmatory evidence of long-term permanent implant durability predictions associated with state-of-the-art standards of ASTM F2477 and ISO 25539-2.

References

1.
Mahtabi
M. J.
,
Shamsaei
N.
, and
Mitchell
M. R.
, “
Fatigue of Nitinol: The State-of-the-Art and Ongoing Challenges
,”
Journal of the Mechanical Behavior of Biomedical Materials
50
(
2015
):
228
254
, https://doi.org/10.1016/j.jmbbm.2015.06.010
2.
Weaver
J. D.
,
Sena
G. M.
,
Aycock
K. I.
,
Roiko
A.
,
Falk
W. M.
,
Sivan
S.
, and
Berg
B. T.
, “
Rotary Bend Fatigue of Nitinol to One Billion Cycles
,”
Shape Memory and Superelasticity
9
, no. 
1
(March
2023
):
50
73
, https://doi.org/10.1007/s40830-022-00409-7
3.
Gbur
J. L.
and
Lewandowski
J. J.
, “
Fatigue and Fracture of Wires and Cables for Biomedical Applications
,”
International Materials Reviews
61
, no. 
4
(May
2016
):
231
314
, https://doi.org/10.1080/09506608.2016.1152347
4.
Pelton
A. R.
,
Berg
B. T.
,
Saffari
P.
,
Stebner
A. P.
, and
Bucsek
A. N.
, “
Pre-strain and Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol Medical Devices
,”
Shape Memory and Superelasticity
8
, no. 
2
(June
2022
):
64
84
, https://doi.org/10.1007/s40830-022-00377-y
5.
Pelton
A. R.
,
Pelton
S. M.
,
Jörn
T.
,
Ulmer
J.
,
Niedermaier
D.
,
Plaskonka
K.
,
LePage
W.
,
Saffari
P.
, and
Mitchell
M. R.
, “
The Quest for Fatigue-Resistant Nitinol for Medical Implants
,” in
Fourth Symposium on Fatigue and Fracture of Metallic Medical Materials and Devices
, ed.
Mitchell
M. R.
,
Berg
B. T.
,
Woods
T. O.
, and
Jerina
K. L.
(
West Conshohocken, PA
:
ASTM International
,
2019
),
1
30
, https://doi.org/10.1520/STP161620180041
6.
Robertson
S. W.
,
Pelton
A. R.
, and
Ritchie
R. O.
. “
Mechanical Fatigue and Fracture of Nitinol
,”
International Materials Reviews
57
, no. 
1
(January
2012
):
1
37
, https://doi.org/10.1179/1743280411Y.0000000009
7.
Tolomeo
D.
,
Davidson
S.
, and
Santinoranont
M.
, “
Cyclic Properties of Superelastic Nitinol: Design Implications
,” in
SMST-2000: Proceedings of the International Conference on Shape Memory and Superelastic Technologies
, ed.
Russell
S. M.
and
Pelton
A. R.
(Pacific Grove, CA:
2001
),
471
476
.
8.
Standard Guide for Fatigue-to-Fracture (FtF) Methodology for Cardiovascular Medical Devices
, ASTM F3211-17 (West Conshohocken, PA:
ASTM International
, approved September 1,
2017
), https://doi.org/10.1520/F3211-17
9.
Frotscher
M.
,
Jackstien
M.
,
Conti
C.
,
Strope
E. R.
, and
Conti
J. C.
, “
A New Approach for Fatigue-to-Fracture Testing of Coronary Stents
,” in
Fourth Symposium on Fatigue and Fracture of Metallic Medical Materials and Devices
, ed.
Mitchell
M. R.
,
Berg
B. T.
,
Woods
T. O.
, and
Jerina
K. L.
(
West Conshohocken, PA
:
ASTM International
,
2019
),
112
124
, https://doi.org/10.1520/STP161620180037
10.
Standard Guide for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data (Withdrawn)
, ASTM E739-23 (West Conshohocken, PA:
ASTM International
, approved February 1,
2023
), https://doi.org/10.1520/E0739-23
11.
Standard Test Methods for In Vitro Pulsatile Durability Testing of Vascular Stents and Endovascular Prostheses
, ASTM F2477-23 (West Conshohocken, PA:
ASTM International
, approved February 1,
2023
), https://doi.org/10.1520/F2477-23
12.
Cardiovascular Implants—Endovascular Devices—Part 2: Vascular Stents
, ISO 25539-2:2020 (Geneva, Switzerland:
International Organization for Standardization
,
2020
).
13.
Pelton
A. R.
,
Schroeder
V.
,
Mitchell
M. R.
,
Gong
X.-Y.
,
Barney
M.
, and
Robertson
S. W.
, “
Fatigue and Durability of Nitinol Stents
,”
Journal of the Mechanical Behavior of Biomedical Materials
1
, no. 
2
(April
2008
):
153
164
, https://doi.org/10.1016/j.jmbbm.2007.08.001
14.
Robertson
S. W.
and
Ritchie
R. O.
, “
In Vitro Fatigue-Crack Growth and Fracture Toughness Behavior of Thin-Walled Superelastic Nitinol Tube for Endovascular Stents: A Basis for Defining the Effect of Crack-Like Defects
,”
Biomaterials
28
, no. 
4
(February
2007
):
700
709
, https://doi.org/10.1016/j.biomaterials.2006.09.034
15.
Falk
W. M.
, “
A Statistically Rigorous Fatigue Strength Analysis Approach Applied to Medical Devices
,” in
Fourth Symposium on Fatigue and Fracture of Metallic Medical Materials and Devices
, ed.
Mitchell
M. R.
,
Berg
B. T.
,
Woods
T. O.
, and
Jerina
K. L.
(
West Conshohocken, PA
:
ASTM International
,
2019
),
98
111
, https://doi.org/10.1520/STP161620180034
This content is only available via PDF.
You do not currently have access to this content.