Abstract

Accurate representation of fatigue-crack-growth-rate behavior is crucial for predicting the fatigue life of additively manufactured materials in structural applications. In this study, fatigue-crack-growth and fatigue-life behavior of Ti-6Al-4V specimens fabricated via laser directed energy deposition (DED-L) were investigated and compared to their conventionally manufactured counterparts. Compression precracking constant-amplitude and ASTM load-reduction methods were used to generate large-crack growth rate data in the near-threshold (low-rate) regime on standard compact tension (C(T)) specimens. In addition, single-edge-notch-bend (SEN(B)) specimens were used to generate fatigue and small-crack-growth-rate data. Uniaxial fatigue tests were also conducted on flat, KT = 1, dogbone specimens. A plasticity-induced crack closure model, fatigue structural analysis (FASTRAN), was used to predict the fatigue life of the notched and unnotched specimens. The obtained results were also compared to the fatigue life and crack growth behavior of wrought Ti-6Al-4V. The experimental results indicated that crack growth in the SEN(B) specimens was faster than that in the C(T) specimens at higher rates, but comparable in the low-rate near-threshold regime. Furthermore, the fatigue life of DED-L Ti-6Al-4V specimens was successfully predicted using large-crack growth data.

References

1.
Thompson
S. M.
,
Bian
L.
,
Shamsaei
N.
, and
Yadollahi
A.
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
,”
Additive Manufacturing
8
(
2015
):
36
62
, https://doi.org/10.1016/j.addma.2015.07.001
2.
Thijs
L.
,
Verhaeghe
F.
,
Craeghs
T.
,
Humbeeck
J. V.
, and
Kruth
J.-P.
, “
A Study of the Microstructural Evolution during Selective Laser Melting of Ti–6Al–4V
,”
Acta Materialia
58
, no. 
9
(May
2010
):
3303
3312
, https://doi.org/10.1016/j.actamat.2010.02.004
3.
Shamsaei
N.
,
Yadollahi
A.
,
Bian
L.
, and
Thompson
S. M.
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control
,”
Additive Manufacturing
8
(
2015
):
12
35
, https://doi.org/10.1016/j.addma.2015.07.002
4.
Yadollahi
A.
and
Shamsaei
N.
, “
Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities
,”
International Journal of Fatigue
98
(
2017
):
14
31
, https://doi.org/10.1016/j.ijfatigue.2017.01.001
5.
Aboutaleb
A. M.
,
Mahtabi
M. J.
,
Tschopp
M. A.
, and
Bian
L.
, “
Multi-objective Accelerated Process Optimization of Mechanical Properties in Laser-Based Additive Manufacturing: Case Study on Selective Laser Melting (SLM) Ti-6Al-4V
,”
Journal of Manufacturing Processes
38
(
2019
):
432
444
, https://doi.org/10.1016/j.jmapro.2018.12.040
6.
Aboutaleb
A. M.
,
Bian
L.
,
Elwany
A.
,
Shamsaei
N.
,
Thompson
S. M.
, and
Tapia
G.
, “
Accelerated Process Optimization for Laser-Based Additive Manufacturing by Leveraging Similar Prior Studies
,”
IISE Transactions
49
, no. 
1
(January
2017
):
31
44
, https://doi.org/10.1080/0740817X.2016.1189629
7.
Ranjan
R.
,
Samant
R.
, and
Anand
S.
, “
Integration of Design for Manufacturing Methods with Topology Optimization in Additive Manufacturing
,”
Journal of Manufacturing Science and Engineering
139
, no. 
6
(June
2017
): 061007, https://doi.org/10.1115/1.4035216
8.
Stephens
R. I.
,
Fatemi
A.
,
Stephens
R. R.
, and
Fuchs
H. O.
,
Metal Fatigue in Engineering
, 2nd ed. (
Hoboken, NJ
:
Wiley
,
2000
).
9.
Gorelik
M.
, “
Additive Manufacturing in the Context of Structural Integrity
,”
International Journal of Fatigue
94
, Part 2 (January
2017
):
168
177
, https://doi.org/10.1016/j.ijfatigue.2016.07.005
10.
Yadollahi
A.
,
Mahmoudi
M.
,
Elwany
A.
,
Doude
H.
,
Bian
L.
, and
Newman
J. C.
 Jr.
, “
Fatigue-Life Prediction of Additively Manufactured Material: Effects of Heat Treatment and Build Orientation
,”
Fatigue & Fracture of Engineering Materials & Structures
43
, no. 
4
(April
2020
):
831
844
, https://doi.org/10.1111/ffe.13200
11.
Yadollahi
A.
,
Mahmoudi
M.
,
Elwany
A.
,
Doude
H.
,
Bian
L.
, and
Newman
J. C.
 Jr.
, “
Effects of Crack Orientation and Heat Treatment on Fatigue-Crack-Growth Behavior of AM 17-4 PH Stainless Steel
,”
Engineering Fracture Mechanics
226
(
2020
): 106874, https://doi.org/10.1016/j.engfracmech.2020.106874
12.
Brant
A.
and
Sundaram
M. M.
, “
A Novel System for Cloud-Based Micro Additive Manufacturing of Metal Structures
,”
Journal of Manufacturing Processes
20
, Part 3 (October
2015
):
478
484
, https://doi.org/10.1016/j.jmapro.2015.06.020
13.
Newman
J. C.
 Jr.
,
Yamada
Y.
,
Ziegler
B. M.
, and
Shaw
J. W.
,
Small and Large Crack Databases for Rotorcraft Materials, DOT/FAA/TC-12/29
(Washington, DC: Federal Aviation Administration,
2014
).
14.
Newman
J. C.
 Jr.
and
Edwards
P. R.
,
Short-Crack Growth Behaviour in an Aluminum Alloy–An AGARD Cooperative Test Programme, AGARD-R-732
(
Paris
:
Advisory Group for Aerospace Research and Development
,
1988
).
15.
Yadollahi
A.
,
Mahtabi
M. J.
,
Khalili
A.
,
Doude
H. R.
, and
Newman
J. C.
 Jr.
, “
Fatigue Life Prediction of Additively Manufactured Material: Effects of Surface Roughness, Defect Size, and Shape
,”
Fatigue & Fracture of Engineering Materials & Structures
41
, no. 
7
(July
2018
):
1602
1614
, https://doi.org/10.1111/ffe.12799
16.
Dzugan
J.
,
Seifi
M.
,
Prochazka
R.
,
Rund
M.
,
Podany
P.
,
Konopik
P.
, and
Lewandowski
J. J.
, “
Effects of Thickness and Orientation on the Small Scale Fracture Behaviour of Additively Manufactured Ti-6Al-4V
,”
Materials Characterization
143
(
2018
):
94
109
, https://doi.org/10.1016/j.matchar.2018.04.003
17.
Riemer
A.
,
Leuders
S.
,
Thöne
M.
,
Richard
H. A.
,
Tröster
T.
, and
Niendorf
T.
, “
On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting
,”
Engineering Fracture Mechanics
120
(
2014
):
15
25
, https://doi.org/10.1016/j.engfracmech.2014.03.008
18.
Konečná
R.
,
Kunz
L.
,
Bača
A.
, and
Nicoletto
G.
, “
Long Fatigue Crack Growth in Ti6Al4V Produced by Direct Metal Laser Sintering
,”
Procedia Engineering
160
(
2016
):
69
76
, https://doi.org/10.1016/j.proeng.2016.08.864
19.
Riemer
A.
,
Richard
H. A.
,
Brüggemann
J. P.
, and
Wesendahl
J. N.
, “
Fatigue Crack Growth in Additive Manufactured Products
,”
Fracture and Structural Integrity
9
, no. 
34
(October
2015
):
437
446
, https://doi.org/10.3221/IGF-ESIS.34.49
20.
Zhai
Y.
,
Lados
D. A.
,
Brown
E. J.
, and
Vigilante
G. N.
, “
Fatigue Crack Growth Behavior and Microstructural Mechanisms in Ti-6Al-4V Manufactured by Laser Engineered Net Shaping
,”
International Journal of Fatigue
93
, Part 1 (December
2016
):
51
63
, https://doi.org/10.1016/j.ijfatigue.2016.08.009
21.
Gallagher
J. P.
,
van Stone
R. H.
,
deLaneuville
R. E.
,
Gravett
P.
, and
Bellows
R. S.
,
Improved High-Cycle Fatigue (HCF) Life Prediction, AFRL-ML-WP-TR-2001-4159
(
Wright-Patterson Air Force Base, OH
:
Air Force Research Laboratory
,
2001
).
22.
Newman
J. C.
 Jr.
,
Ruschau
J. J.
, and
Hill
M. R.
, “
Improved Test Method for Very Low Fatigue-Crack-Growth-Rate Data
,”
Fatigue & Fracture of Engineering Materials & Structures
34
, no. 
4
(April
2011
):
270
279
, https://doi.org/10.1111/j.1460-2695.2010.01516.x
23.
Ruschau
J. J.
and
Newman
J. C.
 Jr.
, “
Compression Precracking to Generate Near Threshold Fatigue Crack Growth Rates in an Aluminum and Titanium Alloy
,”
Journal of ASTM International
5
, no. 
7
(July
2008
):
257
271
, https://doi.org/10.1520/JAI101623
24.
Liu
Z.
,
He
B.
,
Lyu
T.
, and
Zou
Y.
, “
A Review on Additive Manufacturing of Titanium Alloys for Aerospace Applications: Directed Energy Deposition and beyond Ti-6Al-4V
,”
Journal of the Minerals Metals & Materials Society
73
, no. 
6
(June
2021
):
1804
1818
, https://doi.org/10.1007/s11837-021-04670-6
25.
Zhai
Y.
,
Galarraga
H.
, and
Lados
D. A.
, “
Microstructure, Static Properties, and Fatigue Crack Growth Mechanisms in Ti-6Al-4V Fabricated by Additive Manufacturing: LENS and EBM
,”
Engineering Failure Analysis
69
(
2016
):
3
14
, https://doi.org/10.1016/j.engfailanal.2016.05.036
26.
Newman
J. C.
 Jr.
, “
FASTRAN—A Fatigue Crack Growth Life-Prediction Code Based on the Crack-Closure Concept
,” in
Version 5.4 User Guide
(Europa, MS: Fatigue and Fracture Associates LLC,
2013
).
27.
Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
, ASTM E466–21 (West Conshohocken, PA:
ASTM International
, approved June 1,
2021
), https://doi.org/10.1520/E466-21
28.
Standard Test Method for Measurement of Fatigue Crack Growth Rates
, ASTM E647–23b (West Conshohocken, PA:
ASTM International
, approved November 15,
2023
), https://doi.org/10.1520/E647-23b
29.
Lütjering
G.
, “
Influence of Processing on Microstructure and Mechanical Properties of (α+β) Titanium Alloys
,”
Materials Science and Engineering: A
243
, nos.
1–2
(March
1998
):
32
45
, https://doi.org/10.1016/S0921-5093(97)00778-8
30.
Zheng
B.
,
Zhou
Y.
,
Smugeresky
J. E.
,
Schoenung
J. M.
, and
Lavernia
E. J.
, “
Thermal Behavior and Microstructural Evolution During Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations
,”
Metallurgical and Materials Transactions A
39
, no. 
9
(September
2008
):
2228
2236
, https://doi.org/10.1007/s11661-008-9557-7
31.
Bontha
S.
,
Klingbeil
N. W.
,
Kobryn
P. A.
, and
Fraser
H. L.
, “
Thermal Process Maps for Predicting Solidification Microstructure in Laser Fabrication of Thin-Wall Structures
,”
Journal of Materials Processing Technology
178
, nos.
1–3
(September
2006
):
135
142
, https://doi.org/10.1016/j.jmatprotec.2006.03.155
32.
Selcuk
C.
, “
Laser Metal Deposition for Powder Metallurgy Parts
,”
Powder Metallurgy
54
, no. 
2
(April
2011
):
94
99
, https://doi.org/10.1179/174329011X12977874589924
33.
Bache
M. R.
,
Evans
W. J.
,
Suddell
B.
, and
Herrouin
F. R. M.
, “
The Effects of Texture in Titanium Alloys for Engineering Components under Fatigue
,”
International Journal of Fatigue
23
, Supplement
1
(January
2001
):
153
159
, https://doi.org/10.1016/S0142-1123(01)00124-4
34.
Bantounas
I.
,
Lindley
T. C.
,
Rugg
D.
, and
Dye
D.
, “
Effect of Microtexture on Fatigue Cracking in Ti–6Al–4V
,”
Acta Materialia
55
, no. 
16
(September
2007
):
5655
5665
, https://doi.org/10.1016/j.actamat.2007.06.034
35.
Hazell
P. J.
,
Appleby-Thomas
G. J.
,
Wielewski
E.
, and
Escobedo
J. P.
, “
The Shock and Spall Response of Three Industrially Important Hexagonal Close-Packed Metals: Magnesium, Titanium and Zirconium
,”
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
372
, no. 
2023
(August
2014
): 20130204, https://doi.org/10.1098/rsta.2013.0204
36.
Le Biavant
K.
,
Pommier
S.
, and
Prioul
C.
, “
Local Texture and Fatigue Crack Initiation in a Ti-6Al-4V Titanium Alloy
,”
Fatigue & Fracture of Engineering Materials & Structures
25
, no. 
6
(June
2002
):
527
545
, https://doi.org/10.1046/j.1460-2695.2002.00480.x
37.
Pilchak
A.
,
Bhattacharjee
A.
,
Williams
R. E. A.
, and
Williams
J. C.
, “
The Effect of Microstructure on Fatigue Crack Initiation in Ti-6Al-4V
,” in
12th International Conference on Fracture (ICF-12)
, Volume
5
(
Ottawa, Canada
:
National Research Council Canada
,
2009
),
3737
3747
.
38.
Pippan
R.
, “
The Growth of Short Cracks under Cyclic Compression
,”
Fatigue & Fracture of Engineering Materials & Structures
9
, no. 
5
(May
1987
):
319
328
, https://doi.org/10.1111/j.1460-2695.1987.tb00459.x
39.
Newman
J. C.
 Jr.
,
Schneider
J.
,
Daniel
A.
, and
McKnight
D.
, “
Compression Pre-cracking to Generate Near Threshold Fatigue-Crack-Growth Rates in Two Aluminum Alloys
,”
International Journal of Fatigue
27
, nos. 
10–12
(October–December
2005
):
1432
1440
, https://doi.org/10.1016/j.ijfatigue.2005.07.006
40.
Newman
J. C.
 Jr.
and
Yamada
Y.
, “
Compression Precracking Methods to Generate Near-Threshold Fatigue-Crack-Growth-Rate Data
,”
International Journal of Fatigue
32
, no. 
6
(June
2010
):
879
885
, https://doi.org/10.1016/j.ijfatigue.2009.02.030
41.
Newman
J. C.
 Jr.
, “
A Crack-Closure Model for Predicting Fatigue Crack Growth under Aircraft Spectrum Loading
,” in
Methods and Models for Predicting Fatigue Crack Growth under Random Loading
, eds.
Chang
J. B.
and
Hudson
C. M.
(West Conshohocken, PA:
ASTM International
,
1981
),
53
84
, https://doi.org/10.1520/STP28334S
42.
McClung
R. C.
, “
Finite Element Analysis of Specimen Geometry Effects on Fatigue Crack Closure
,”
Fatigue & Fracture of Engineering Materials & Structures
17
, no. 
8
(August
1994
):
861
872
, https://doi.org/10.1111/j.1460-2695.1994.tb00816.x
43.
Dugdale
D. S.
, “
Yielding of Steel Sheets Containing Slits
,”
Journal of the Mechanics and Physics of Solids
8
, no. 
2
(May
1960
):
100
104
, https://doi.org/10.1016/0022-5096(60)90013-2
44.
Elber
W.
, “
Fatigue Crack Closure under Cyclic Tension
,”
Engineering Fracture Mechanics
2
, no. 
1
(July
1970
):
37
44
, https://doi.org/10.1016/0013-7944(70)90028-7
45.
Elber
W.
, “
The Significance of Fatigue Crack Closure
,” in
Damage Tolerance in Aircraft Structures
(West Conshohocken, PA: ASTM International,
1971
):
230
242
, https://doi.org/10.1520/STP26680S
46.
Newman
J. C.
 Jr.
, “
A Crack Opening Stress Equation for Fatigue Crack Growth
,”
International Journal of Fracture
24
, no. 
4
(April
1984
):
R131
R135
, https://doi.org/10.1007/BF00020751
47.
Tada
H.
,
Paris
P. C.
, and
Irwin
G. R.
, “
The Stress Analysis of Cracks
,” 3rd ed. (
New York
:
American Society of Mechanical Engineers
,
1973
).
48.
Newman
J. C.
 Jr.
, “
Fracture Analysis of Various Cracked Configurations in Sheet and Plate Materials
,” in
Properties Related to Fracture Toughness
, eds.
Weiss
V.
and
Warke
W. R.
(West Conshohocken, PA:
ASTM International
,
1976
).
49.
Mahtabi
M. J.
,
Sanford
A.
,
Shamsaei
N.
, and
Newman
J. C.
 Jr.
, “
Transferability of the Two-Parameter Fracture Criterion for 2219 Aluminium Alloy Cracked Configurations
,”
Fatigue & Fracture of Engineering Materials & Structures
39
, no. 
3
(March
2016
):
335
345
, https://doi.org/10.1111/ffe.12359
50.
Newman
J. C.
 Jr.
,
Kota
K.
, and
Lacy
T. E.
, “
Fatigue and Crack-Growth Behavior in a Titanium Alloy under Constant-Amplitude and Spectrum Loading
,”
Engineering Fracture Mechanics
187
(
2018
):
211
224
, https://doi.org/10.1016/j.engfracmech.2017.10.036
This content is only available via PDF.
You do not currently have access to this content.