Abstract

This study presents a comparison between computational simulations and experimental tests of fatigue crack growth (FCG) in austenitic stainless-steel Fe-25Ni-20Cr (Alloy 709) at 550°C, 600°C, and 700°C. FCG tests were conducted in compact, C(T), specimens at load ratios of R = 0.1, R = 0.5, and R = 0.7. Crack growth rates were measured using several monitoring techniques. In parallel with the experimental tests, a strip-yield model for creep-fatigue crack growth (SYM-CFCG) was employed to simulate crack growth under fatigue loading. The SYM-CFCG software predicts the development of plasticity-induced crack closure (PICC) near the tip of a growing crack. Computation of the PICC allows for predictions of crack growth rate at different R ratios. The evolution of crack-tip opening loads is presented for the entire crack growth history. Predictions of crack length evolution as a function of applied load cycles are compared with the experimental results. In addition, predictions of crack growth rates per cycle versus applied stress intensity factor range are also compared with the experimental measurements. In both cases, excellent agreements between experimental data and SYM-CFCG predictions are obtained. The crack growth data presented can represent a guiding criterion in establishing the fatigue service life of engineering components made of Alloy 709.

References

1.
Li
C.
and
Yang
M.
, “
The Challenge of Nuclear Reactor Structural Materials for Generation IV Nuclear Energy Systems
,” in
20th International Conference on Structural Mechanics in Reactor Technology
(
Raleigh, NC
:
International Association for Structural Mechanics in Reactor Technology
,
2009
),
2686
2693
.
2.
Locatelli
G.
,
Mancini
M.
, and
Todeschini
N.
, “
Generation IV Nuclear Reactors: Current Status and Future Prospects
,”
Energy Policy
61
(
2013
):
1503
1520
, https://doi.org/10.1016/j.enpol.2013.06.101
3.
Delage
F.
,
Carmack
J.
,
Lee
C. B.
,
Mizuno
T.
,
Pelletier
M.
, and
Somers
J.
, “
Status of Advanced Fuel Candidates for Sodium Fast Reactor within the Generation IV International Forum
,”
Journal of Nuclear Materials
441
, nos. 
1–3
(October
2013
):
515
519
, https://doi.org/10.1016/j.jnucmat.2012.09.036
4.
Koo
G.-H.
and
Lee
J.-H.
, “
High Temperature Structural Integrity Evaluation Method and Application Studies by ASME-NH for the Next Generation Reactor Design
,”
Journal of Mechanical Science and Technology
20
, no. 
12
(December
2006
):
2061
2078
, https://doi.org/10.1007/BF02916323
5.
Evropin
S. V.
and
Filatov
V. M.
, “
Service-Life Analysis of Nuclear Reactor Elements under High-Frequency Random Loading
,”
Atomic Energy
113
, no. 
4
(February
2013
):
258
264
, https://doi.org/10.1007/s10512-013-9627-9
6.
Flanagan
G.
,
Fanning
T.
, and
Sofu
T.
, “
Sodium-Cooled Fast Reactor (SFR) Technology and Safety Overview
” (
paper presentation, Sodium-Cooled Fast Reactor Technology Seminar
,
Washington, DC
, February 18,
2015
).
7.
Zhao
Y.
,
Cinbiz
M. N.
,
Park
J.-S.
,
Almer
J.
, and
Kaoumi
D.
, “
Tensile Behavior and Microstructural Evolution of a Fe-25Ni-20Cr Austenitic Stainless Steel (Alloy 709) from Room to Elevated Temperatures through In-Situ Synchrotron X-ray Diffraction Characterization and Transmission Electron Microscopy
,”
Journal of Nuclear Materials
540
(
2020
): 152367, https://doi.org/10.1016/j.jnucmat.2020.152367
8.
Alsmadi
Z. Y.
and
Bourham
M. A.
, “
Shielding and Corrosion Properties of the Alloy 709 as Canister Material for Spent Nuclear Fuel Dry Casks
,”
Defence Technology
21
(
2023
):
116
124
, https://doi.org/10.1016/j.dt.2022.08.002
9.
Alsmadi
Z. Y.
and
Murty
K. L.
, “
Effect of Strain Range on High Temperature Creep-Fatigue Behaviour of Fe-25Ni-20Cr (wt.%) Austenitic Stainless Steel (Alloy 709)
,”
Materials at High Temperatures
38
, no. 
1
(
2021
):
47
60
, https://doi.org/10.1080/09603409.2020.1859310
10.
Alsmadi
Z. Y.
,
Alomari
A.
,
Kumar
N.
, and
Murty
K. L.
, “
Effect of Hold Time on High Temperature Creep-Fatigue Behavior of Fe–25Ni–20Cr (wt.%) Austenitic Stainless Steel (Alloy 709)
,”
Materials Science and Engineering: A
771
(
2020
): 138591, https://doi.org/10.1016/j.msea.2019.138591
11.
Porter
T. D.
,
Wang
Z.
,
Gilbert
E. P.
,
Kaufman
M. J.
,
Wright
R. N.
, and
Findley
K. O.
, “
Microstructure Evolution of Alloy 709 During Static-Aging and Creep-Fatigue Testing
,”
Materials Science and Engineering: A
801
(
2021
): 140361, https://doi.org/10.1016/j.msea.2020.140361
12.
Zhao
Y.
,
Schoell
R.
,
Zheng
C.
,
Cinbiz
M. N.
,
Frost
M.
,
An
K.
, and
Kaoumi
D.
, “
Creep Properties of Advanced Austenitic Steel 709 Determined through Short Experiments under In-Situ Neutron Diffraction Followed by TEM Characterization
,”
Materials Characterization
182
(
2021
): 111519, https://doi.org/10.1016/j.matchar.2021.111519
13.
Lall
A.
,
Bowen
P.
, and
Rabiei
A.
, “
A Study on the Creep Behavior of Alloy 709 Using In-Situ Scanning Electron Microscopy
,”
Materials Characterization
183
(
2022
): 111587, https://doi.org/10.1016/j.matchar.2021.111587
14.
Shaber
N.
,
Stephens
R.
,
Ramirez
J.
,
Potirniche
G. P.
,
Taylor
M.
,
Charit
I.
, and
Pugesek
H.
, “
Fatigue and Creep-Fatigue Crack Growth in Alloy 709 at Elevated Temperatures
,”
Materials at High Temperatures
36
, no. 
6
(
2019
):
562
574
, https://doi.org/10.1080/09603409.2019.1664079
15.
Ramirez
J.
,
Potirniche
G. P.
,
Shaber
N.
,
Taylor
M.
,
Pugesek
H.
,
Stephens
R.
, and
Charit
I.
, “
The Influence of Plasticity-Induced Crack Closure on Creep-Fatigue Crack Growth in Two Heat-Resistant Steels
,”
International Journal of Fatigue
125
(
2019
):
291
298
, https://doi.org/10.1016/j.ijfatigue.2019.04.007
16.
Ramirez
J.
,
Potirniche
G. P.
,
Pugesek
H.
,
Shaber
N.
,
Taylor
M.
,
Stephens
R. R.
, and
Charit
I.
, “
Predicting Creep-Fatigue Crack Growth Rates in Alloy 709 Using Finite Element Simulations of Plasticity and Creep-Induced Crack Closure
,”
MATEC Web of Conferences
165
(
2018
): 13005, https://doi.org/10.1051/matecconf/201816513005
17.
Lall
A.
,
Bowen
P.
, and
Rabiei
A.
, “
Effect of Aging on Failure Mechanism of Alloy 709 at Various Temperatures
,”
Materials Characterization
171
(
2021
): 110750, https://doi.org/10.1016/j.matchar.2020.110750
18.
Yan
J.
,
Yu
S.
,
Ding
R.
,
Li
H.
,
Rabiei
A.
, and
Bowen
P.
, “
Dwell-Fatigue Crack Growth Behaviour of Alloy 709
,”
Acta Materialia
249
(
2023
): 118808, https://doi.org/10.1016/j.actamat.2023.118808
19.
Ferreira
S. E.
,
de Castro
J. T. P.
, and
Meggiolaro
M. A.
, “
Using the Strip-Yield Mechanics to Model Fatigue Crack Growth by Damage Accumulation ahead of the Crack Tip
,”
International Journal of Fatigue
103
(
2017
):
557
575
, https://doi.org/10.1016/j.ijfatigue.2017.06.039
20.
Cauthen
C.
,
Daniewicz
S. R.
, and
Shamsaei
N.
, “
Modeling Fatigue Crack Growth Behavior in Rolled AZ31 Magnesium Alloy Using CTOD Based Strip Yield Modeling
,”
International Journal of Fatigue
96
(
2017
):
196
207
, https://doi.org/10.1016/j.ijfatigue.2016.11.031
21.
Ferreira
S. E.
,
de Castro
J. T. P.
, and
Meggiolaro
M. A.
, “
Fatigue Crack Growth Predictions Based on Damage Accumulation ahead of the Crack Tip Calculated by Strip-Yield Procedures
,”
International Journal of Fatigue
115
(
2018
):
89
106
, https://doi.org/10.1016/j.ijfatigue.2018.03.001
22.
Fullera
R. W.
,
Simsiriwong
J.
, and
Shamsaei
N.
, “
Crack Growth Prediction for Irradiated Stainless Steels under the Combined Fatigue-Creep Loading
,”
Theoretical and Applied Fracture Mechanics
109
(
2020
): 10275, https://doi.org/10.1016/j.tafmec.2020.102759
23.
Potirniche
G. P.
, “
A Closure Model for Predicting Crack Growth under Creep-Fatigue Loading
,”
International Journal of Fatigue
125
(
2019
):
58
71
, https://doi.org/10.1016/j.ijfatigue.2019.03.029
24.
Andrews
B. J.
and
Potirniche
G. P.
, “
Constitutive Creep–Fatigue Crack Growth Methodology in Two Steels Using a Strip Yield Model
,”
Engineering Fracture Mechanics
140
(
2015
):
72
91
, https://doi.org/10.1016/j.engfracmech.2015.03.042
25.
Potirniche
G. P.
, “
A Numerical Strip-Yield Model for the Creep Crack Incubation in Steels
,”
Journal of ASTM International
9
, no. 
3
(March
2012
):
1
13
, https://doi.org/10.1520/JAI104187
26.
Newman
J. C.
and
Sullivan
R.
, “
Strip-Yield Modeling of Load-Time-Temperature Effects on Crack Growth in Engine Materials
,” in
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 10B: Structures and Dynamics
(New York: American Society of Mechanical Engineers,
2020
), V10BT27A004, https://doi.org/10.1115/GT2020-14211
27.
Standard Test Method for Fatigue Crack Growth Testing
, ASTM E647-13 (West Conshohocken, PA:
ASTM International
, approved November 15,
2013
), https://doi.org/10.1520/E0647-23B
28.
Elber
W.
, “
The Significance of Fatigue Crack Closure
,” in
Damage Tolerance in Aircraft Structures
, ed.
Rosenfeld
M. S.
(West Conshohocken, PA:
ASTM International
,
1971
),
230
242
, https://doi.org/10.1520/STP26680S
This content is only available via PDF.
You do not currently have access to this content.