Abstract

An experimental characterization of the mechanical properties in a low-density polyethylene (LDPE) film is performed in this article. Anisotropy in LDPE at different in-plane material orientations is measured from the stress–strain response and digital image correlation observations of the specimens under uniaxial tension. Finite element simulation of in-plane anisotropy of the material is carried out in Abaqus R2020 using available models like von Mises, Hill 48, Barlat Yld91, and Barlat Yld2004-18P. To express the mechanical behavior at larger strain, a suitable hardening extrapolation model is selected from a trial of several extrapolation models. To validate the simulation methods and the material characterization process, finite element simulation results such as force displacement and strain distribution are compared with the experimental data showing good agreement. Finally, a calibrated anisotropic yield model together with ductile failure criterion is shown to successfully simulate the response of precracked LDPE film under tension. Overall, this study provides valuable insights into the modeling of LDPE polymer films with and without cracks using different anisotropic yield functions and largely simplifies material characterization with some tradeoffs.

References

1.
Islam
M. S.
, “
Fracture and Delamination in Packaging Materials: A Study of Experimental Methods and Simulation Techniques
” (PhD diss.,
Blekinge Institute of Technology
,
2019
).
2.
Islam
M. S.
,
Kao-Walter
S.
, and
Yang
G.
, “
Study of Ligament Length Effect on Mode Mix of a Modified In-Plane Shear Test Specimen
,”
Materials Performance and Characterization
5
, no. 
3
(July
2016
):
249
259
, https://doi.org/10.1520/MPC20150058
3.
Islam
M. S.
,
Khan
A.
,
Kao-Walter
S.
, and
Jian
L.
, “
A Study of Shear Stress Intensity Factor of PP and HDPE by a Modified Experimental Method Together with FEM
,”
International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering
7
, no. 
11
(October
2013
):
1177
1182
, https://doi.org/10.5281/zenodo.1088947
4.
Hill
R.
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences
193
, no. 
1033
(May
1948
):
281
297
, https://doi.org/10.1098/rspa.1948.0045
5.
Barlat
F.
,
Aretz
H.
,
Yoon
J. W.
,
Karabin
M. E.
,
Brem
J. C.
, and
Dick
R. E.
, “
Linear Transfomation-Based Anisotropic Yield Functions
,”
International Journal of Plasticity
21
, no. 
5
(May
2005
):
1009
1039
, https://doi.org/10.1016/j.ijplas.2004.06.004
6.
Comsa
D.-S.
and
Banabic
D.
, “
Plane Stress Yield Criterion for Highly Anisotropic Sheet Metals
,” in
Proceedings of the Seventh International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, NUMISHEET
(Interlaken, Switzerland: Numerical Simulation of Sheet Metal Forming Processes,
2008
),
43
48
.
7.
Banabic
D.
,
Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation
(
Berlin, Germany
:
Springer
,
2010
), https://doi.org/10.1007/978-3-540-88113-1
8.
Bazzi
A.
and
Angelou
A.
, “
Simulation of the Anisotropic Material Properties in Polymers Obtained in Thermal Forming Process
” (master’s thesis,
Jönköping University
,
2018
).
9.
van Dommelen
J. A. W.
,
Brekelmans
W. A. M.
, and
Baaijens
F. P. T.
, “
Micromechanical Modeling of Particle-Toughening of Polymers by Locally Induced Anisotropy
,”
Mechanics of Materials
35
, no. 
9
(September
2003
):
845
863
, https://doi.org/10.1016/S0167-6636(02)00307-1
10.
van Erp
T. B.
, “
Anisotropic Plasticity in Oriented Semi-crystalline Polymer Systems
” (master’s thesis,
Eindhoven University of Technology
,
2008
).
11.
Liang
Z.
,
Li
J.
,
Zhang
X.
, and
Kan
Q.
, “
A Viscoelastic-Viscoplastic Constitutive Model and Its Finite Element Implementation of Amorphous Polymers
,”
Polymer Testing
117
(
2023
): 107831, https://doi.org/10.1016/j.polymertesting.2022.107831
12.
Kroon
M.
and
Rubin
M. B.
, “
An Eulerian Constitutive Model for the Inelastic Finite Strain Behaviour of Isotropic Semi-crystalline Polymers
,”
European Journal of Mechanics. A/Solids
100
(
2023
): 105004, https://doi.org/10.1016/j.euromechsol.2023.105004
13.
Kweon
S.
and
Benzerga
A. A.
, “
Finite Element Implementation of a Macromolecular Viscoplastic Polymer Model
,”
International Journal for Numerical Methods in Engineering
94
, no. 
10
(June
2013
):
895
919
, https://doi.org/10.1002/nme.4474
14.
Shahid
S.
and
Gukhool
W.
, “
Experimental Testing and Material Modeling of Anisotropy in Injection Moulded Polymer Materials
” (master’s thesis,
Blekinge Institute of Technology
,
2020
).
15.
Shahid
S.
,
Andreasson
E.
,
Petersson
V.
,
Gukhool
W.
,
Kang
Y.
, and
Kao-Walter
S.
, “
Simplified Characterization of Anisotropic Yield Criteria for an Injection-Molded Polymer Material
,”
Polymers
15
, no. 
23
(December
2023
): 4520, https://doi.org/10.3390/polym15234520
This content is only available via PDF.
You do not currently have access to this content.