Abstract

Fatigue debond growth of bonded composite specimens in mode I, mode II, and mixed-mode I/II loadings were studied experimentally and numerically. For the mode I loading, test data sets were analyzed under the linear elasticity condition. For the mode II and mixed-mode loadings, specific test data processing was used to ensure that nonlinear effects that act outside of the cyclic loading range are excluded from the fatigue behavior assessment. An important finding under the mode II and mixed-mode loadings is that the actual loading ratios in the tests varied and were different from the applied displacement ratio. The experimental characterization of the fatigue debond behaviors was complemented with numerically determined correlations between the compliance and debond length under each individual loading. This correlation was used to determine an effective debond length from the compliance determined experimentally. According to the actual loading ratio variation, the fatigue growth behaviors were characterized using Paris’ law. Numerical fatigue analyses using two codes, Abaqus finite element (FE) and AFGROW, were carried out and validated using the developed test database. The details on an FE model setup and analysis strategy for a mixed-mode specimen are presented. Good agreement in the fatigue lives was obtained between the test and numerical analyses for the three types of loading. Also, good agreements in the load versus debond growth length relations were obtained between the test and FE analysis in the mode II and mixed-mode loadings. Reasons for the result discrepancy are discussed. The study shows that the presented analysis procedure is effective. The thorough description of both the used test data processing and numerical analysis procedure fills a knowledge gap in the available literature.

References

1.
Ashton
H. R.
, “
Damage Tolerance and Durability Testing for F/A-18 E/F Composite Materials Structures
,” in
Proceedings of 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
(
Reston, VA
:
American Institute of Aeronautics and Astronautics
,
1996
),
1
13
, https://doi.org/10.2514/6.1996-1320
2.
Banea
M. D.
and
da Silva
L. F. M.
, “
Adhesively Bonded Joints in Composite Materials: An Overview
,”
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
223
, no. 
1
(January
2009
):
1
18
, https://doi.org/10.1243/14644207JMDA219
3.
Kenane
M.
,
Azari
Z.
,
Benmedakhene
S.
, and
Benzeggagh
M. L.
, “
Experimental Development of Fatigue Delamination Threshold Criterion
,”
Composites Part B: Engineering
42
, no. 
3
(April
2011
):
367
375
, https://doi.org/10.1016/j.compositesb.2010.12.019
4.
Li
G.
,
Chen
J. H.
,
Yanishevsky
M.
, and
Bellinger
N. C.
, “
Static Strength of a Composite Butt Joint Configuration with Different Attachments
,”
Composite Structures
94
, no. 
5
(April
2012
):
1736
1744
, https://doi.org/10.1016/j.compstruct.2011.12.008
5.
Li
G.
,
Lee-Sullivan
P.
, and
Thring
R. W.
, “
Nonlinear Finite Element Analysis of Stress and Strain Distributions Across the Adhesive Thickness in Composite Single-Lap Joints
,”
Composite Structures
46
, no. 
4
(December
1999
):
395
403
, https://doi.org/10.1016/S0263-8223(99)00106-3
6.
Quaresimin
M.
and
Ricotta
M.
, “
Stress Intensity Factors and Strain Energy Release Rates in Single Lap Bonded Joints in Composite Materials
,”
Composites Science and Technology
66
, no. 
5
(May
2006
):
647
656
, https://doi.org/10.1016/j.compscitech.2005.07.036
7.
Balzani
C.
,
Wagner
W.
,
Wilckens
D.
,
Degenhardt
R.
,
Büsing
S.
, and
Reimerdes
H.-G.
, “
Adhesive Joints in Composite Laminates—A Combined Numerical/Experimental Estimate of Critical Energy Release Rates
,”
International Journal of Adhesion and Adhesives
32
(January
2012
):
23
38
, https://doi.org/10.1016/j.ijadhadh.2011.09.002
8.
Jones
R.
,
Stelzer
S.
, and
Brunner
A. J.
, “
Mode I, II and Mixed Mode I/II Delamination Growth in Composites
,”
Composite Structures
110
(April
2014
):
317
324
, https://doi.org/10.1016/j.compstruct.2013.12.009
9.
Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites (Superseded)
, ASTM D5528-01 (West Conshohocken, PA:
ASTM International
, approved November 10,
2001
), https://doi.org/10.1520/D5528-01
10.
Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber-Reinforced Polymer Matrix Composites (Superseded)
, ASTM D6115-97(2004) (West Conshohocken, PA:
ASTM International
, approved March 1,
2004
), https://doi.org/10.1520/D6115-97R04
11.
Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites (Superseded)
, ASTM D7905/D7905M-14 (West Conshohocken, PA:
ASTM International
, approved October 1,
2014
), https://doi.org/10.1520/D7905_D7905M-14
12.
Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites (Superseded)
, ASTM D6671/D6671M-06 (West Conshohocken, PA:
ASTM International
, March 1,
2006
), https://doi.org/10.1520/D6671_D6671M-06
13.
Sjögren
A.
and
Asp
L. E.
, “
Effects of Temperature on Delamination Growth in a Carbon/Epoxy Composite under Fatigue Loading
,”
International Journal of Fatigue
24
, nos. 
2–4
(February–April
2002
):
179
184
, https://doi.org/10.1016/S0142-1123(01)00071-8
14.
Brunner
A. J.
,
Stelzer
S.
,
Pinter
G.
, and
Terrasi
G. P.
, “
Mode II Fatigue Delamination Resistance of Advanced Fiber-Reinforced Polymer–Matrix Laminates: Towards the Development of a Standardized Test Procedure
,”
International Journal of Fatigue
50
(May
2013
):
57
62
, https://doi.org/10.1016/j.ijfatigue.2012.02.021
15.
Shindo
Y.
,
Miura
M.
,
Takeda
T.
,
Saito
N.
, and
Narita
F.
, “
Cryogenic Delamination Growth in Woven Glass/Epoxy Composite Laminates under Mixed-Mode I/II Fatigue Loading
,”
Composites Science and Technology
71
, no. 
5
(March
2011
):
647
652
, https://doi.org/10.1016/j.compscitech.2011.01.006
16.
Allegri
G.
,
Wisnom
M. R.
, and
Hallett
S. R.
, “
A New Semi-Empirical Law for Variable Stress-Ratio and Mixed-Mode Fatigue Delamination Growth
,”
Composites Part A: Applied Science and Manufacturing
48
(May
2013
):
192
200
, https://doi.org/10.1016/j.compositesa.2013.01.018
17.
Pascoe
J. A.
,
Alderliesten
R. C.
, and
Benedictus
R.
, “
Methods for the Prediction of Fatigue Delamination Growth in Composites and Adhesive Bonds – A Critical Review
,”
Engineering Fracture Mechanics
112–113
(November
2013
):
72
96
, https://doi.org/10.1016/j.engfracmech.2013.10.003
18.
Carreras
L.
,
Renart
J.
,
Turon
A.
,
Costa
J.
,
Essa
Y.
, and
Martín de la Escalera
F.
, “
An Efficient Methodology for the Experimental Characterization of Mode II Delamination Growth under Fatigue Loading
,”
International Journal of Fatigue
95
(February
2017
):
185
193
, https://doi.org/10.1016/j.ijfatigue.2016.10.017
19.
Pegorin
F.
,
Pingkarawat
K.
, and
Mouritz
A. P.
, “
Mixed-Mode I/II Delamination Fatigue Strengthening of Polymer Composites Using Z-Pins
,”
Composites Part B: Engineering
123
(August
2017
):
219
226
, https://doi.org/10.1016/j.compositesb.2017.05.016
20.
de Moura
M. F. S. F.
,
Moreira
R. D. F.
, and
Ramírez
F. M. G.
, “
Influence of Geometric and Material Parameters on the Mode II Interlaminar Fatigue/Fracture Characterization of CFRP Laminates
,”
Composites Science and Technology
210
(July
2021
): 108819, https://doi.org/10.1016/j.compscitech.2021.108819
21.
Li
G.
and
Renaud
G.
, “
Evaluation of Composite DCB Delamination Growth by Combing Experimental Data and Numerical Analysis
,” in
Proceedings of the American Society for Composites—37th Technical Conference
, ed.
Zhupanksa
O.
and
Madenci
E.
(
Dayton, OH
:
American Society for Composites
,
2022
), https://doi.org/10.12783/asc37/36369
22.
Li
G.
,
Simulation of High-Cycle Fatigue Using Cohesive Zone Model for a Bonded Composite DCB Configuration, NRC Technical Report, LTR-SMM-2022-0014
(
Ottawa, Canada
:
National Research Council Canada
,
2022
).
23.
Naghipour
P.
,
Bartsch
M.
, and
Voggenreiter
H.
, “
Simulation and Experimental Validation of Mixed Mode Delamination in Multidirectional CF/PEEK Laminates under Fatigue Loading
,”
International Journal of Solids and Structures
48
, no. 
6
(March
2011
):
1070
1081
, https://doi.org/10.1016/j.ijsolstr.2010.12.012
24.
Zhao
L.
,
Gong
Y.
,
Zhang
J.
,
Wang
Y.
,
Lu
Z.
,
Peng
L.
, and
Hu
N.
, “
A Novel Interpretation of Fatigue Delamination Growth Behavior in CFRP Multidirectional Laminates
,”
Composites Science and Technology
133
(September
2016
):
79
88
, https://doi.org/10.1016/j.compscitech.2016.07.016
25.
Liu
Y.
and
Zhang
C.
, “
A Critical Plane-Based Model for Mixed-Mode Delamination Growth Rate Prediction under Fatigue Cyclic Loadings
,”
Composites Part B: Engineering
139
, no. 
15
(April
2018
):
185
194
, https://doi.org/10.1016/j.compositesb.2017.11.053
26.
Moreira
R. D. F.
,
de Moura
M. F. S. F.
,
Silva
F. G. A.
,
Reina
J. P. A.
, and
Rodrigues
T. M. S.
, “
A Simple Strategy to Perform Mixed-Mode I+II Fatigue/Fracture Characterisation of Composite Bonded Joints
,”
International Journal of Fatigue
158
(May
2022
): 106723, https://doi.org/10.1016/j.ijfatigue.2022.106723
27.
Xu
W.
,
Guo
Z. Z.
, and
Yu
Y.
, “
A Combined Strain and Compliance Method for Improving ASTM D6671 to Measure the Mixed Modes I/II Interlaminar Fracture Toughness
,”
Composite Structures
221
(August
2019
): 110867, https://doi.org/10.1016/j.compstruct.2019.04.039
28.
Liu
W.
and
Chen
P.
, “
Determination of the Bridging Law for Mixed-Mode I/II Delamination without Measuring the Crack Length and Crack Relative Displacements
,”
Theoretical and Applied Fracture Mechanics
109
(October
2020
): 102750, https://doi.org/10.1016/j.tafmec.2020.102750
29.
Li
G.
,
Renaud
G.
, and
Li
C.
, “
Simulation of Mixed-Mode I/II Debond Using VCCT and Cohesive Elements
” (paper presentation,
American Society for Composites 38th Annual Technical Conference
,
Boston, MA
, September 17–20,
2023
).
30.
Li
G.
and
Li
C.
, “
Assessment of Debond Simulation and Cohesive Zone Length in a Bonded Composite Joint
,”
Composites Part B: Engineering
69
(February
2015
):
359
368
, https://doi.org/10.1016/j.compositesb.2014.10.024
31.
Benzeggagh
M. L.
and
Kenane
M.
, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus
,”
Composites Science and Technology
56
, no. 
4
(
1996
):
439
449
, https://doi.org/10.1016/0266-3538(96)00005-X
32.
Li
G.
,
Renaud
G.
, and
Li
C.
,
Modelling Fatigue Debonding in a Bonded Composite DCB Structure, NRC Technical Report, LTR-SMM-2022-0045
(
Ottawa, Canada
:
Aerospace Research Centre, National Research Council Canada
,
2022
).
33.
Abaqus/CAE User’s Guide
(Vélizy-Villacoublay, France: Dassault Systèmes,
2021
).
34.
Harter
J.
,
AFGROW User’s Guide and Technical Manual, Version 5.3.5.24
(
Naperville, IL
:
LexTech
,
2020
).
35.
Blanco
N.
,
Gamstedt
E. K.
,
Asp
L. E.
, and
Costa
J.
, “
Mixed-Mode Delamination Growth in Carbon-Fibre Composite Laminates under Cyclic Loading
,”
International Journal of Solids and Structures
41
, no. 
15
(July
2004
):
4219
4235
, https://doi.org/10.1016/j.ijsolstr.2004.02.040
36.
Turon
A.
,
Costa
J.
,
Camanho
P. P.
, and
Dávila
C. G.
, “
Simulation of Delamination in Composites under High-Cycle Fatigue
,”
Composites Part A: Applied Science and Manufacturing
38
, no. 
11
(November
2007
):
2270
2282
, https://doi.org/10.1016/j.compositesa.2006.11.009
37.
Harper
P. W.
and
Hallett
S. R.
, “
A Fatigue Degradation Law for Cohesive Interface Elements – Development and Application to Composite Materials
,”
International Journal of Fatigue
32
, no. 
11
(November
2010
):
1774
1787
, https://doi.org/10.1016/j.ijfatigue.2010.04.006
38.
Ebadi-Rajoli
J.
,
Akhavan-Safar
A.
,
Hosseini-Toudeshky
H.
, and
da Silva
L. F. M.
, “
Progressive Damage Modeling of Composite Materials Subjected to Mixed Mode Cyclic Loading Using Cohesive Zone Model
,”
Mechanics of Materials
143
(April
2020
): 103322, https://doi.org/10.1016/j.mechmat.2020.103322
This content is only available via PDF.
You do not currently have access to this content.