Abstract

Nickel based super-alloys when exposed to a combination of high temperature and low melting point fused corrosion products, result in early fatigue failure compared to their response in high temperature benign environment. The high cycle fatigue (HCF) (at 550 and 625°C) as well as fatigue crack growth (at 550°C) behavior of a nickel based super alloy 718 in hot corrosive environment (Na2SO4+NaCl salt coating), typical of marine engine environment, is presented in this paper. At least an order of magnitude decrease in fatigue life is noticed when the temperature is changed from 550 to 625°C at stress levels below 450 MPa. The statistical analysis of scatter in fatigue lives at different stress levels is performed and a Weibull–Inverse power law model is fitted to the stress–fatigue life data of alloy 718 in hot corrosive environment. Fracture surface examination of hot corrosion fatigue failures showed higher crack growth rates compared to uncoated high temperature HCF fracture surfaces. Fatigue crack growth rate at 550°C in a hot corrosive environment increases by an order of magnitude at 0.5 Hz in the Paris region compared to crack growth kinetics at 2 Hz in lab air environment at the same temperature. The fracture surface shows a mix of transgranular and intergranular mode of crack in the propagation region at 0.5 Hz. A fatigue failure diagram is proposed combining the thresholds of maximum stress level from endurance tests and maximum stress intensity factor from fatigue crack growth tests to demarcate the regions of propagating and non-propagating cracks during hot corrosion fatigue. The complexities in incorporating the effect of loading frequency in fatigue failure diagram are highlighted.

References

1.
Rapp
,
R. A.
, “
Chemistry and Electrochemistry of the Hot Corrosion of Metals
,”
Corros.–NACE
, Vol.
42
, No.
10
,
1986
, pp.
568
577
. https://doi.org/10.5006/1.3583026
2.
Rapp
,
R. A.
, “
Chemistry and Electrochemistry of the Hot Corrosion of Metals
,”
Mater. Sci. Eng.
, Vol.
87
,
1987
, pp.
319
327
. https://doi.org/10.1016/0025-5416(87)90394-6
3.
Eliaz
,
N.
,
Shemesh
,
G.
and
Latanision
,
R. M.
, “
Hot Corrosion in Gas Turbine Components
,”
Eng. Fail. Anal.
, Vol.
9
,
2002
, pp.
31
43
. https://doi.org/10.1016/S1350-6307(00)00035-2
4.
Stringer
,
J.
, “
High Temperature Corrosion of Superalloys
,”
Mater. Sci. Technol.
, Vol.
3
,
1987
, pp.
482
493
.
5.
Goebel
,
J. A.
and
Pettit
,
F. S.
, “
The Influence of Sulphides on the Oxidation Behavior of Nickel-Base Alloys
,”
Metall. Trans.
, Vol.
1
,
1970
, pp.
3421
3429
. https://doi.org/10.1007/BF02642794
6.
Yoshiba
,
M.
, “
Effect of Hot Corrosion on the Mechanical Performances of Superalloys and Coating Systems
,”
Corros. Sci.
, Vol.
35
,
1993
, pp.
1115
1124
. https://doi.org/10.1016/0010-938X(93)90331-A
7.
Jianting
,
G.
,
Ranucci
,
D.
,
Picco
,
E.
and
Strocchi
,
P. M.
, “
The Effect of Hot Corrosion on Creep and Fracture Behavior of Cast Nickel-Based Superalloy IN 738 LC
,”
Proceedings of the High Temperature Alloys for Gas Turbines Conference
,
Liège, Belgium
, Oct. 4–6,
1982
,
National Aeronautics and Space Administration (NASA)
,
Washington, D.C.
, pp.
805
819
.
8.
Pieraggi
,
B.
, “
Effect of Creep or Low Cycle Fatigue on the Oxidation or Hot Corrosion Behavior of Nickel-Base Superalloys
,”
Mater. Sci. Eng.
, Vol.
88
,
1987
, pp.
199
204
. https://doi.org/10.1016/0025-5416(87)90085-1
9.
Mahobia
,
G. S.
,
Sudhakar
,
R. G.
,
Ajesh
,
A.
,
Chattopadhyay
,
K.
,
Santhi Srinivas
,
N. C.
and
Singh
,
V.
, “
Effect of Salt Coating on Low Cycle Fatigue Behavior of Nickel-Base Superalloy GTM-SU-718
,”
Proc. Eng.
, Vol.
55
,
2013
, pp.
830
834
. https://doi.org/10.1016/j.proeng.2013.03.339
10.
Sahu
,
J. K.
,
Gupta
,
R. K.
,
Swaminathan
,
J.
,
Paulose
,
N.
and
Mannan
,
S. L.
, “
Influence of Hot Corrosion on Low Cycle Fatigue Behavior of Nickel Base Superalloy SU 263
,”
Int. J. Fatigue
, Vol.
51
,
2013
, pp.
68
73
. https://doi.org/10.1016/j.ijfatigue.2013.02.006
11.
Yoshiba
,
M.
and
Miyagawa
,
O.
, “
High Temperature Corrosion Fatigue and Grain Size Control in Nickel-Base and Nickel-Iron-Base Superalloys
,”
Superalloys 1988
,
Reichman
S.
,
Duhl
D. N.
,
Maurer
G.
,
Antolovich
S.
, and
Lund
C.
, Eds.,
The Metallurgical Society of AMIE
,
Englewood, CO
,
1988
, pp.
825
834
.
12.
Viswanathan
,
R.
,
Damage Mechanisms and Life Assessment of High-temperature Components
,
ASM International
,
Metals Park, OH
,
1993
.
13.
Kofstad
,
R.
,
High Temperature Corrosion
, 1st ed.,
Springer
,
New York
,
1988
.
14.
Araujo
,
J. A.
and
Nowell
,
D.
, “
Analysis of Pad Size Effects in Fretting Fatigue Using Short Crack Arrest Methodologies
,”
Int. J. Fatigue
, Vol.
21
,
1999
, pp.
947
956
. https://doi.org/10.1016/S0142-1123(99)00077-8
15.
Peter
,
J. O.
,
Boyce
,
B. L.
,
Chen
,
X.
,
McNaney
,
J. M.
,
Hutchinson
,
J. W.
, and
Ritchie
,
R. O.
, “
On the Application of the Kitagawa–Takahashi Diagram to Foreign-Object Damage and High Cycle Fatigue
,”
Eng. Fract. Mech.
, Vol.
69
,
2002
, pp.
1425
1446
. https://doi.org/10.1016/S0013-7944(01)00152-7
16.
Venkateswaran
,
P.
,
Ganesh Sundaraman
,
S.
, and
Pathak
,
S. D.
, “
Generation of Stress vs. Crack Length Plots for a Ferritic Steel Weld Metal Based on Kitagawa–Takahashi Approach
,”
Mater. Lett.
, Vol.
59
,
2005
, pp.
495
498
. https://doi.org/10.1016/j.matlet.2004.10.032
17.
Sadananda
,
K.
and
Vasudevan
,
A. K.
, “
Failure Diagram for Chemically Assisted Crack Growth
,”
Metall. Mater. Trans. A
, Vol.
42A
,
2011
, pp.
296
303
. https://doi.org/10.1007/s11661-010-0469-y
18.
Sadananda
,
K.
, “
Failure Diagram and Chemical Driving Forces for Subcritical Crack Growth
,”
Metall. Mater. Trans. A
, Vol.
44A
,
2013
, pp.
1190
1199
. https://doi.org/10.1007/s11661-012-1469-x
19.
El Haddad
,
M. H.
,
Topper
,
T. H.
and
Smith
,
K. N.
, “
Prediction of Non Propagating Cracks
,”
Eng. Fract. Mech.
, Vol.
11
,
1979
, pp.
573
584
. https://doi.org/10.1016/0013-7944(79)90081-X
20.
ASTM E466-10:
Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2010
.
21.
Dhinakaran
,
S.
and
Prakash
,
R. V.
, “
Influence of Frequency on Hot Corrosion Fatigue Crack Growth
,”
Proceedings of the 27th Symposium of the International Committee on Aeronautical Fatigue
,
Jerusalem, Israel
, June 5–7,
2013
.
22.
Reliability Software, Version 8
. (
2012
).
Reliasoft
,
Tucson, AZ
.
23.
Prakash
,
R. V.
and
Dhinakaran
,
S.
, “
Estimation of Corrosion Fatigue Crack Growth Through Frequency Shedding Method
,”
J. ASTM Int.
, Vol.
9
, No.
5
,
2013
, JAI103988. https://doi.org/10.1520/JAI103988
This content is only available via PDF.
You do not currently have access to this content.