Abstract

A laboratory-scale thermal fatigue simulator has been designed, constructed, and commissioned by the authors for studying thermal fatigue of hot-working tool steels by means of rapid alternated heating and cooling. The basic design features, construction characteristics, and test capabilities of the thermal fatigue simulator are presented in this paper. Thermal fatigue simulations were run on hardened and tempered AISI H13 hot-working tool steel specimens in time-control with heating and cooling times of 15 and 10 s, respectively, and a total number of 500 and 2000 thermal fatigue cycles. The experimental results have demonstrated that the simulator is capable of producing thermal fatigue cracks with the same characteristics of those seen in real industrial hot-working tools. Based on their size and the extent of propagation, a clear distinction between primary, secondary, and craze cracks could be established at the failed surfaces. Additionally, a thermo-mechanical finite element model of the first 10 thermal fatigue cycles was developed to compute the transient temperatures, stresses, and strains distributions within the test specimen during thermal cycling. Based on the model results, the low cycle fatigue life was estimated using the Coffin–Manson equation, which relates the number of cycles to crack initiation to the plastic strain range per cycle. The experimentally obtained fatigue lives were appreciably shorter than the calculated ones, arguably due to surface roughness and oxidation effects.

References

1.
Sjöström
,
J.
and
Bergström
,
J.
, “
Thermal Fatigue in Hot-Working Tools
,”
Scand. J. Metall.
, Vol.
34
,
2005
, pp.
221
231
. https://doi.org/10.1111/j.1600-0692.2005.00719.x
2.
Jiang
,
Q. C.
,
Sui
,
H. L.
, and
Guan
,
Q. F.
, “
Thermal Fatigue Behaviour of New Type High-Cr Cast Hot Work Die Steel
,”
ISIJ Int.
, Vol.
44
, No.
6
,
2004
, pp.
1103
1107
. https://doi.org/10.2355/isijinternational.44.1103
3.
Grüning
,
A.
,
Lebsanft
,
M.
, and
Scholtes
,
B.
, “
Cyclic Stress–Strain Behavior and Damage of Tool Steel AISI H11 Under Isothermal and Thermal Fatigue Conditions
,”
Mater. Sci. Eng. A
, Vol.
527
, No.
7–8
,
2010
, pp.
1979
1985
. https://doi.org/10.1016/j.msea.2009.11.031
4.
Persson
,
A.
,
Hogmark
,
S.
, and
Bergström
,
J.
, “
Simulation and Evaluation of Thermal Fatigue Cracking of Hot Work Tool Steels
,”
Int. J. Fatigue
, Vol.
26
, No.
10
,
2004
, pp.
1095
1107
. https://doi.org/10.1016/j.ijfatigue.2004.03.005
5.
Persson
,
A.
,
Hogmark
,
S.
, and
Bergström
,
J.
, “
Thermal Fatigue Cracking of Surface Engineered Hot Work Tool Steels
,”
Surf. Coat. Technol.
, Vol.
191
, Nos.
2–3
,
2005
, pp.
216
227
. https://doi.org/10.1016/j.surfcoat.2004.04.053
6.
Garza-Montes-de-Oca
,
N. F.
and
Rainforth
,
W. M.
, “
Wear Mechanisms Experienced by a Work Roll Grade High Speed Steel Under Different Environmental Conditions
,”
Wear
, Vol.
267
, Nos.
1–4,
2009
, pp.
441
448
. https://doi.org/10.1016/j.wear.2009.01.048
7.
Garza-Montes-de-Oca
,
N. F.
,
Colás
,
R.
, and
Rainforth
,
W. M.
, “
On the Damage of a Work Roll Grade High Speed Steel by Thermal Cycling
,”
Eng. Fail. Anal.
, Vol.
18
, No.
6
,
2011
, pp.
1576
1583
. https://doi.org/10.1016/j.engfailanal.2011.06.001
8.
Kosec
,
B. K.
,
Kosec
,
L.
, and
Kopač
,
J.
, “
Analysis of Casting Die Failures
,”
Eng. Fail. Anal.
, Vol.
8
, No.
4
,
2001
, pp.
355
359
. https://doi.org/10.1016/S1350-6307(00)00032-7
9.
Persson
,
A.
, “
Strain-Based Approach to Crack Growth and Thermal Fatigue Life of Hot Work Tool Steels
,”
Scand. J. Metall.
, Vol.
33
,
2004
, pp.
53
64
. https://doi.org/10.1111/j.1600-0692.2004.00678.x
10.
Srivastava
,
A.
,
Joshi
,
V.
, and
Shivpuri
,
R.
, “
Computer Modeling and Prediction of Thermal Fatigue Cracking in Die-Casting Tooling
,”
Wear
, Vol.
256
, Nos.
1–2
,
2004
, pp.
38
43
. https://doi.org/10.1016/S0043-1648(03)00281-3
11.
Klobčar
,
D.
,
Tušek
,
J.
, and
Taljat
,
B.
, “
Thermal Fatigue of Materials for Die-Casting Tooling
,”
Mater. Sci. Eng. A
, Vol.
472
, Nos.
1–2
,
2008
, pp.
198
207
. https://doi.org/10.1016/j.msea.2007.03.025
12.
Mercado-Solis
,
R. D.
and
Beynon
,
J. H.
, “
Simulation of Thermal Fatigue in Hot Strip Mill Work Rolls
,”
Scand. J. Metall.
, Vol.
34
,
2005
, pp.
175
191
. https://doi.org/10.1111/j.1600-0692.2005.00712
13.
Pellizzari
,
M.
,
Molinari
,
A.
, and
Straffelini
,
G.
, “
Thermal Fatigue Resistance of Gas and Plasma Nitrided 41CrAlMo7 Steel
,”
Mater. Sci. Eng. A
, Vol.
352
, Nos.
1–2
,
2003
, pp.
186
194
. https://doi.org/10.1016/S0921-5093(02)00867-5
14.
Mercado-Solis
,
R. D.
,
Talamantes-Silva
,
J.
,
Beynon
,
J. H.
, and
Hernandez-Rodriguez
,
M. A. L.
, “
Modelling Surface Thermal Damage to Hot Mill Rolls
,”
Wear
, Vol.
263
, Nos.
7–12
,
2007
, pp.
1560
1567
. https://doi.org/10.1016/j.wear.2006.12.062
15.
Pellizzari
,
M.
,
Molinari
,
A.
, and
Straffelini
,
G.
, “
Thermal Fatigue Resistance of Plasma Duplex-Treated Tool Steel
,”
Surf. Coat. Technol.
, Vols.
142–144
,
2001
, pp.
1109
1115
. https://doi.org/10.1016/S0257-8972(01)01223-3
16.
Pellizzari
,
M.
,
Molinari
,
A.
, and
Straffelini
,
G.
, “
Damage Mechanisms in Duplex Treated Hot Work Tool Steel Under Thermal Cycling
,”
Surf. Eng.
, Vol.
18
, No.
4
,
2002
, pp.
289
298
. https://doi.org/10.1179/026708402225005386
17.
Mercado-Solis
,
R. D.
and
Quinones-Salinas
,
M. A.
, “
Maquina Para Ensayos de Fatiga Termica
,” Mexican Patent No. MX 2337 B, Instituto Mexicano de la Proteccion Industrial.
18.
Quiñones-Salinas
,
M. A.
, “
Desarrollo de una metodologia para ensayos de fatiga termica
,” M.Sc. thesis,
Universidad Autonoma de Nuevo Leon
, Mexico (in Spanish).
19.
Cardarelli
,
F.
,
Materials Handbook: A Concise Desktop Reference
, 2nd ed.,
Springer
,
New York
,
2008
.
20.
Yan
,
H.
,
Hua
,
J.
, and
Shivpuri
,
R.
, “
Numerical Simulation of Finish Hard Turning for AISI H13 Die Steel
,”
Sci. Technol. Adv. Mater.
, Vol.
6
,
2005
, pp.
540
547
. https://doi.org/10.1016/j.stam.2005.04.002
21.
Rothman
,
M. F.
, Ed.,
High-Temperature Property Data: Ferrous Alloys
,
ASM International
,
Materials Park, OH
,
1989
.
22.
Malm
,
S.
and
Norström
,
L. Å.
, “
Material-Related Model for Thermal Fatigue Applied to Tool Steels in Hot-Work Applications
,”
Metal Sci.
, Vol.
13
, No.
9
,
1979
, pp.
544
550
. https://doi.org/10.1179/030634579790438291
23.
Persson
,
A.
,
Hogmark
,
S.
, and
Bergström
,
J.
, “
Failure Modes in Field-Tested Brass Die Casting Dies
,”
J.Mater. Process. Technol.
, Vol.
148
,
2004
, pp.
108
118
. https://doi.org/10.1016/j.jmatprotec.2004.01.052
24.
Srivastava
,
A.
,
Joshi
,
V.
,
Shivpuri
,
R.
,
Bhattacharya
,
R.
, and
Dixit
,
S.
, “
A Multilayer Coating Architecture to Reduce Heat Checking of Die Surfaces
,”
Surf. Coat. Technol.
, Vols.
163–164
,
2003
, pp.
631
636
. https://doi.org/10.1016/S0257-8972(02)00690-4
25.
Kosec
,
B.
,
Kosec
,
L.
, and
Kopac
,
J.
, “
Analysis of Casting Die Failures
,”
Eng. Fail. Anal.
, Vol.
8
,
2001
, pp.
355
359
. https://doi.org/10.1016/S1350-6307(00)00032-7
This content is only available via PDF.
You do not currently have access to this content.