Abstract

While the development of short cracks due to cyclic elastic loading has been relatively widely studied, in particular at room temperature, their consideration for cyclic inelastic loading at high temperatures and lower frequencies is not so common. Short creep-fatigue crack growth rates may be correlated in terms of cyclic strain range, cyclic J-integral or strain energy density factor, with appropriate allowance for associated creep damage accumulation. Candidate approaches are evaluated with reference to test results generated for an advanced 9 %Cr turbine rotor steel. This paper promotes the use of cyclic strain range and strain energy density factor relative to other candidate correlating parameters in relation to the results of a series of 30 min hold time creep-fatigue tests performed using fully instrumented uniaxial specimens with short crack starters. The focus of the testing campaign is an advanced 9 %Cr turbine rotor steel at temperatures of 600 and 625°C.

References

1.
Tomkins
,
B.
, “
Fatigue Crack Propagation—An Analysis
,”
Philos. Mag.
, Vol.
18
, No.
115
,
1968
, pp.
1041
1066
. https://doi.org/10.1080/14786436808227524
2.
Levaillant
,
C.
and
Pineau
,
A.
, “
Assessment of High-Temperature Low-Cycle Fatigue Life of Austenitic Stainless Steels by Using Intergranular Damage as a Correlating Parameter
,”
Low-Cycle Fatigue and Life Prediction, ASTM STP 770
,
ASTM International
,
West Conshohocken, PA
,
1982
, pp.
169
193
.
3.
Skelton
,
R. P.
, “
Growth of Short Cracks During High Strain Fatigue and Thermal Cycling
,”
Low Cycle Fatigue and Life Prediction, ASTM STP 770
,
ASTM International
,
West Conshohocken, PA
,
1982
, pp.
337
381
.
4.
Skelton
,
R. P.
, “
Application of Small Specimen Crack Growth Data to Engineering Components at High Temperature: A Review
,”
Low Cycle Fatigue, ASTM STP 942
,
ASTM International
,
West Conshohocken
, PA,
1988
, pp.
209
355
.
5.
Ohtani
,
R.
and
Kitamura
,
T.
, “
Creep Fatigue Interaction Under High Temperature Conditions
,”
Crack Propagation in Metallic Structures
, Vol.
2
,
Carpinteri
A.
, Ed.,
Elsevier
,
Amsterdam
,
1994
, pp.
1347
1383
.
6.
Holdsworth
,
S. R.
, “
Creep-Fatigue Crack Growth from a Stress Concentration
,”
Mater. High Temp.
, Vol.
15
, No.
2
,
1998
, pp.
111
116
.
7.
Yamamoto
,
M.
and
Nitta
,
A.
, “
Effects of Strain Holding on Creep-Fatigue Micro Crack Initiation Life in a Ni-Based Single Crystal Superalloy
,”
Proceedings of the Conference on Creep and Fatigue at Elevated Temperatures (Creep 7)
,
Tsukuba, Japan
, June 3–8,
2001
,
Japan Society of Mechanical Engineers
, pp.
647
652
.
8.
Skelton
,
R. P.
, “
Creep Fatigue Interactions (Crack Initiation)
,”
Comprehensive Structural Integrity, Vol. 5 Creep and High Temperature Failure
,
Saxena
A.
, Ed.,
Elsevier
,
Oxford, UK
,
2003
, pp.
25
112
.
9.
Mazza
,
E.
,
Hollenstein
,
M.
,
Holdsworth
,
S. R.
and
Skelton
,
R. P.
, “
Notched Specimen Thermo-Mechanical Fatigue of 1CrMoV Turbine Steel
,”
J. Nucl. Eng. Des.
, Vol.
234
,
2004
, pp.
11
24
. https://doi.org/10.1016/j.nucengdes.2004.06.009
10.
R5, 2003
, “
An Assessment Procedure for the High Temperature Response of Structures
,”
British Energy Generation Ltd.
,
Barnwood
,
UK
.
11.
Holdsworth
,
S. R.
,
Skelton
,
R. P.
and
Dogan
,
B.
, “
Code of Practice for the Measurement and Analysis of High Strain Creep-Fatigue Short Crack Growth
,”
Mater. High Temp.
, Vol.
27
, No.
4
,
2010
, pp.
265
283
. https://doi.org/10.3184/096034010X12901002809519
12.
Härkegård
,
G.
,
Denk
,
J.
and
Stärk
,
K.
, “
Growth of Naturally Initiated Fatigue Cracks in Ferritic Gas Turbine Rotor Steels
,”
Int. J. Fatigue
, Vol.
27
, No.
6
,
2005
, pp.
715
726
. https://doi.org/10.1016/j.ijfatigue.2004.10.004
13.
Colombo
,
F.
,
Mazza
,
E.
,
Holdsworth
,
S. R.
and
Skelton
,
R. P.
, “
Thermo-Mechanical Fatigue Tests on Uniaxial and Component-Like 1CrMoV Rotor Steel Specimens
,”
Int. J. Fatigue
, Vol.
30
, No.
2
,
2008
, pp.
241
248
. https://doi.org/10.1016/j.ijfatigue.2007.01.036
14.
Holdsworth
,
S. R.
, “
Factors Influencing High Temperature HSF Crack Growth Rates in Turbine Casting Steels
,”
Proceedings of the Conference on Behaviour of Defects at High Temperatures,
Ainsworth
R. A.
and
Skelton
R. P.
, Eds.,
ESIS
,
Sheffield, UK
,
1993
, pp.
327
349
.
15.
Viswanathan
,
R.
,
Damage Mechanisms and Life Assessment of High-Temperature Components
,
ASM International
,
Materials Park, OH
,
1989
.
16.
Goswami
,
T.
and
Hanninen
,
H.
, “
Dwell Effects on High Temperature Fatigue Damage Mechanisms: Part II
”,
Mater. Des., Vol.
22
,
2001
, pp.
217
236
. https://doi.org/10.1016/S0261-3069(00)00061-3
17.
Holdsworth
,
S. R.
, “
Creep-Fatigue of High Temperatures Steels
,”
Mater. High Temp.
, Vol.
18
, No.
4
,
2001
, pp.
261
265
. https://doi.org/10.3184/096034001783640441
18.
Holdsworth
,
S. R.
, “
Component Assessment Data Requirements from Creep-Fatigue Tests
,”
J. ASTM Int.
, Vol.
8
, No.
3
,
2011
, pp.
3
22
. https://doi.org/10.1520/JAI103583
19.
Rodriguez
,
P.
and
Rao
,
K. B. S.
, “
Nucleation and Growth of Cracks and Cavities under Creep-Fatigue Interaction
,”
Prog. Mater. Sci.
, Vol.
37
,
1993
, pp.
403
480
. https://doi.org/10.1016/0079-6425(93)90006-7
20.
Saxena
,
A.
, “
How Far Have We Come in Predicting High Temperature Crack Growth and the Challenges that Remain Ahead
,”
Proceedings of the International Conference on Temperature-Fatigue Interaction
, May 29–31,
2001
,
European Structural Integrity Society
,
Elsevier, Amsterdam
, pp.
215
226
.
21.
Holdsworth
,
S. R.
and
Ainsworth
,
R. A.
, “
Assessment of Creep-Fatigue Crack Growth
,”
Proceedings of the Conference on Fitness-for-Service
, Amsterdam, The Netherlands, May
17
19
,
2006
, Paper No. FITNET-06-27.
22.
Ritchie
,
R. O.
and
Suresh
,
S.
, “
The Fracture Mechanics Similitude Concept: Questions Concerning its Application to the Behaviour of Short Fatigue Cracks
,”
Mater. Sci. Eng.
, Vol.
57
,
1983
, pp.
27
30
. https://doi.org/10.1016/0025-5416(83)90223-9
23.
Hussain
,
K.
, “
Short Fatigue Crack Behaviour and Analytical Models: A Review
,”
Eng. Fract. Mech.
, Vol.
58
, No.
4
,
1997
, pp.
327
354
. https://doi.org/10.1016/S0013-7944(97)00102-1
24.
Santus
,
C.
and
Taylor
,
D.
, “
Physically Short Crack Propagation in Metals During High Cycle Fatigue
,”
Int. J. Fatigue
, Vol.
31
, Nos. 8–9,
2009
, pp.
1356
1365
. https://doi.org/10.1016/j.ijfatigue.2009.03.002
25.
Künkler
,
B.
,
Düber
,
O.
,
Köster
,
P.
,
Krupp
,
U.
,
Fritzen
,
C. -P.
and
Christ
,
H. -J.
, “
Modelling of Short Crack Propagation—Transition from Stage I to Stage II
,”
Eng. Fract. Mech.
, Vol.
75
, Nos.
3–4,
2008
, pp.
715
725
. https://doi.org/10.1016/j.engfracmech.2007.02.018
26.
Dowling
,
N. E.
, “
Crack Growth During Low-Cycle Fatigue of Smooth Axial Specimens
,”
Cyclic Stress-Strain and Plastic Deformation Aspects of Crack Growth, ASTM STP 637
,
ASTM International
,
West Conshohocken, PA
,
1977
, pp.
97
121
.
27.
Mowbray
,
D. F.
, “
Derivation of a Low-Cycle Fatigue Relationship Employing the J-Integral Approach to Crack Growth
,”
Cracks and Fracture, ASTM STP 601
,
ASTM International
,
West Conshohocken, PA
,
1976
, pp.
33
46
.
28.
Rice
,
J.
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
J. Appl. Mech.
, Vol.
35
,
1967
, pp.
379
386
. https://doi.org/10.1115/1.3601206
29.
Fournier
,
B.
,
Sauzey
,
M.
,
Caës
,
C.
,
Noblecourt
,
M.
,
Mottot
,
M.
,
Bougault
,
A.
,
Rabeau
,
V.
,
Man
,
J.
,
Gillia
,
O.
,
Lemoine
,
P.
and
Pineau
,
A.
, “
Creep-Fatigue-Oxidation Interactions in a 9Cr-1Mo Martensitic Steel: Part III: Lifetime Prediction
,”
Int. J. Fatigue
, Vol.
3
,
2008
, pp.
1797
1812
. https://doi.org/10.1016/j.ijfatigue.2008.02.006
30.
Dowling
,
N. E.
and
Begley
,
J. A.
, “
Fatigue Crack Growth During Gross Plasticity and the J-Integral
,”
Mechanics of Crack Growth, ASTM STP 590
,
ASTM International
,
West Conshohocken, PA
,
1976
, pp.
82
103
.
31.
Shih
,
C.
and
Hutchinson
,
J.
, “
Fully Plastic Solutions and Large Scale Yielding Estimates for Plane Stress Crack Problems
,”
J. Eng. Mater. Technol.
, Vol.
98
,
1976
, pp.
289
295
. https://doi.org/10.1115/1.3443380
32.
Zhu
,
S -P.
,
Huang
,
H -Z.
,
He
,
L. -P.
,
Liu
,
Y.
and
Wang
,
Z.
, “
A Generalised Energy-Based Fatigue—Creep Damage Parameter for Life Prediction of Turbine Disk Alloys
,”
Eng. Fract. Mech.
, Vol.
90
,
2012
, pp.
89
100
. https://doi.org/10.1016/j.engfracmech.2012.04.021
33.
Pham
,
M. S.
and
Holdsworth
,
S. R.
, “
Role of Microstructural Condition on Fatigue Damage Development of AISI 316L at 20 and 300°C
,”
Int. J. Fatigue
, Vol.
51
,
2013
, pp.
36
48
. https://doi.org/10.1016/j.ijfatigue.2013.02.005
34.
Radhakrishnan
,
V. M.
, “
An Analysis of Low Cycle Fatigue Based on Hysteresis Energy
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
3
,
1980
, pp.
75
84
. https://doi.org/10.1111/j.1460-2695.1980.tb01105.x
35.
Ostergren
,
W.
, “
A Damage Function and Associated Failure Equations for Predicting Hold Time and Frequency Effects in Elevated Temperature Low Cycle Fatigue
,”
ASTM J. Test. Eval.
, Vol.
4
, No.
5
,
1976
, pp.
327
339
. https://doi.org/10.1520/JTE10520J
36.
Morrow
,
J.
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378
,
ASTM International
,
West Conshohocken, PA
,
1965
, pp.
45
84
.
37.
Skelton
,
R. P.
, “
Energy Criterion for High Temperature Low Cycle Fatigue Failure
,”
Mater. Sci. Technol.
, Vol.
7
, No.
5
,
1991
, pp.
427
440
. https://doi.org/10.1179/026708391790183853
38.
Reuchet
,
J.
and
Remy
,
L.
, “
High Temperature Fatigue Behaviour of a Cast Cobalt-Base Superalloy
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
2
, No.
1
,
1979
, pp.
51
62
. https://doi.org/10.1111/j.1460-2695.1979.tb01342.x
39.
Majumdar
,
S.
and
Maiya
,
P. S.
, “
Unified and Mechanistic Approach to Creep-Fatigue Damage
,”
ÂNL-76-58
,
Argonne National Laboratory
,
Chicago, IL
,
1976
.
40.
Chapetti
,
M.
, “
Fatigue Propagation Threshold of Short Cracks Under Constant Amplitude Loading
,”
Int. J. Fatigue
, Vol.
25
, No.
12
,
2003
, pp.
1319
1326
. https://doi.org/10.1016/S0142-1123(03)00065-3
41.
ASTM E2714-09: Standard Test Method for Creep-Fatigue Testing
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2009
.
42.
James
,
L. A.
and
Mills
,
W. J.
, “
Review and Synthesis of Stress Intensity Factor Solutions Applicable to Cracks in Bolts
,”
Eng. Fract. Mech.
, Vol.
30
, No.
5
,
1988
, pp.
641
653
. https://doi.org/10.1016/0013-7944(88)90156-7
43.
Holdsworth
,
S. R.
,
Maschek
,
A. K. F.
,
Binda
,
L.
and
Mazza
,
E.
, “
Effect of Prior Cyclic Damage Removal on High Temperature Low Cycle Fatigue Endurance
,”
Proc. Eng.
, Vol.
2
,
2010
, pp.
379
386
. https://doi.org/10.1016/j.proeng.2010.03.042
44.
Fournier
,
B.
,
Sauzay
,
M.
,
Barcelo
,
F.
,
Rauch
,
E.
,
Renault
,
A.
,
Cozzika
,
T.
,
Dupuy
,
L.
and
Pineau
,
A.
, “
Creep-Fatigue Interactions in a 9 pct Cr −1 pct Mo Martensitic Steel: Part II. Microstructure Evolutions
,”
Metall. Mater. Trans. A
, Vol.
40
,
2009
, pp.
330
341
. https://doi.org/10.1007/s11661-008-9687-y
45.
Thomas
,
G. B.
,
Hales
,
R.
,
Ramsdale
,
J.
,
Suhr
,
R. W.
and
Sumner
,
G.
, “
A Code of Practice for Constant-Amplitude Low Cycle Fatigue Testing at Elevated Temperatures
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
12
, No.
2
,
1989
, pp.
135
153
. https://doi.org/10.1111/j.1460-2695.1989.tb00519.x
46.
Takahashi
,
Y.
, “
Study on Creep-Fatigue Evaluation Procedures for High-Chromium Steels—Part I: Test Results and Life Prediction Based on Measured Stress Relaxation
,”
Int. J. Pressure Vessels Piping
, Vol.
85
, No.
6
,
2008
, pp.
406
422
. https://doi.org/10.1016/j.ijpvp.2007.11.008
47.
Shankar
,
V.
,
Valsan
,
M. K.
,
Rao
,
K. B. S.
,
Kannan
,
R.
,
Mannan
,
S. L.
and
Pathak
,
S. D.
, “
Low Cycle Fatigue Behavior and Microstructural Evolution of Modified 9Cr–1Mo Ferritic Steel
,”
Mater. Sci. Eng. A
, Vol.
437
, No.
2
,
2006
, pp.
413
422
. https://doi.org/10.1016/j.msea.2006.07.146
This content is only available via PDF.
You do not currently have access to this content.