Abstract

For the integrity assessment and damage-tolerant design of components operating at elevated temperatures under cyclic loading conditions, evaluation of fatigue crack growth (FCG) properties in the threshold and Paris regimes is important. The FCG behaviors of a modified 9Cr-1Mo steel (P91) and SS 316L(N) for applications in the prototype fast breeder reactor to be commissioned shortly at Kalpakkam, India have been studied extensively in our laboratory over a wide range of temperatures. Some aspects of high-temperature FCG observed in these investigations will be reviewed in this paper. It has been observed that for many engineering alloys, dynamic strain aging plays an important role in the temperature-dependent variations in deformation and fracture behavior, including the FCG parameters. Another important aspect in deciding the FCG behavior is the crack closure behavior, the mechanisms of which may vary with temperature. Effect of crack closure and DSA on the FCG properties of P91 steel and SS 316L(N) welds will be discussed. The DSA mechanism has been identified from the activation energy for the process determined from the temperature dependence of the crack tip strain rates. During FCG of engineering materials, there can be stress shielding at the crack tip because of various factors, like crack bridging, branching, closure, etc. Effect of stress shielding at the crack tip at different conditions was quantified using a procedure incorporating the inter relations between compliance, crack length, and stress intensity factor. The paper will summarize the results of the above studies.

References

1.
Design and Construction Rules for Mechanical Components of FBR Nuclear Islands
,”
RCC-MR
,
AFCEN
,
La Défense, France
,
2007
.
2.
Paris
,
P. C.
,
Gomez
,
M.
, and
Anderson
,
W.
, “
A Rational Analytic Theory of Fatigue
,”
Trend Eng.
, Vol.
13
,
1961
, pp.
9
14
.
3.
ASTM E647-08e1
:
Standard Test Method for Measurement of Fatigue Crack Growth Rates
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2010
.
4.
Elber
,
W.
, “
Fatigue Crack Closure Under Cyclic Tension
,”
Eng. Fract. Mech.
, Vol.
2
,
1970
, pp.
37
45
. https://doi.org/10.1016/0013-7944(70)90028-7
5.
Suresh
,
S.
,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge, U.K.
,
1991
.
6.
Ritchie
,
R. O.
, “
Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack Tip Shielding
,”
Mater. Sci. Eng. A
, Vol.
103
,
1988
, pp.
15
28
. https://doi.org/10.1016/0025-5416(88)90547-2
7.
Ritchie
,
R. O.
,
Gilbert
,
C. J.
, and
McNaney
,
J. M.
, “
Mechanics and Mechanisms of Fatigue Damage and Crack Growth in Advanced Materials
,”
Int. J. Solids Struct.
, Vol.
37
,
2000
, pp.
311
329
. https://doi.org/10.1016/S0020-7683(99)00096-7
8.
Petit
,
J.
and
Sarrazin-Baudoux
,
C.
, “
Some Critical Aspects of Low Rate Fatigue Crack Propagation in Metallic Materials
,”
Int. J. Fatigue
, Vol.
32
,
2010
, pp.
962
970
. https://doi.org/10.1016/j.ijfatigue.2009.10.013
9.
Rhyim
,
Y. M.
,
Lee
,
Y. J.
,
Chang
,
Y. W.
, and
Lee
,
C. S.
, “
Effects of Microstructure and Specimen Thickness on the Fatigue Crack Closure in Al-Li 8090 Alloy
,”
Scripta Metall. Mater.
, Vol.
32
,
1995
, pp.
1119
1124
. https://doi.org/10.1016/0956-716X(94)00021-9
10.
Lados
,
D. A.
and
Apelian
,
D.
, “
Relationships between Microstructure and Fatigue Crack Propagation Paths in Al–Si–Mg Cast Alloys
,”
Eng. Fract. Mech.
, Vol.
75
,
2008
, pp.
821
832
. https://doi.org/10.1016/j.engfracmech.2007.01.027
11.
Rodriguez
,
P.
, “
Serrated Plastic Flow
,”
Bull. Mater. Sci.
, Vol.
6
,
1984
, pp.
653
663
. https://doi.org/10.1007/BF02743993
12.
Samuel
,
K. G.
,
Mannan
,
S. L.
, and
Rodriguez
,
P.
, “
Serrated Yielding in AISI 316 Stainless Steel
,”
Acta Metall.
, Vol.
36
,
1988
, pp.
2323
2327
. https://doi.org/10.1016/0001-6160(88)90331-8
13.
Venkadesan
,
S.
,
Phaniraj
,
C.
,
Sivaprasad
,
P. V.
, and
Rodriguez
,
P.
, “
Activation Energy for Serrated Flow in a 15Cr-15Ni Ti-Modified Austenitic Stainless Steel
,”
Acta Metall. Mater.
, Vol.
40
,
1992
, pp.
569
580
. https://doi.org/10.1016/0956-7151(92)90406-5
14.
Samuel
,
K. G.
,
Ganesan
,
V.
,
Bhanu Sankara Rao
,
K.
,
Mannan
,
S. L.
, and
Kushwaha
,
H. S.
, “
Strain Controlled LCF Behavior of SA-333 Gr 6 Piping Material in the Range 298–673 K
,”
Int. J. Pressure Vessels Piping
, Vol.
81
,
2004
, pp.
973
981
. https://doi.org/10.1016/j.ijpvp.2004.02.012
15.
Nagesha
,
A.
,
Valsan
,
M.
,
Kannan
,
R.
,
Bhanu Sankara Rao
,
K.
, and
Mannan
,
S. L.
, “
Influence of Temperature on the Low Cycle Fatigue Behavior of a Modified 9Cr–1Mo Ferritic Steel
,”
Int. J. Fatigue
, Vol.
24
,
2002
, pp.
1285
1293
. https://doi.org/10.1016/S0142-1123(02)00035-X
16.
Srinivasan
,
V. S.
,
Sandhya
,
R.
,
Valsan
,
M.
,
Bhanu Sankara Rao
,
K.
, and
Mannan
,
S. L.
, “
Comparative Evaluation of Strain Controlled Low Cycle Fatigue Behavior of Solution Annealed and Prior Cold Worked 316L(N) Stainless Steel
,”
Int. J. Fatigue
, Vol.
26
,
2004
, pp.
1295
1302
. https://doi.org/10.1016/j.ijfatigue.2004.05.003
17.
Rodriguez
,
P.
, “
Dynamic Strain Ageing: Is It Really a Damage Mechanism?
Proceedings of the International Symposium on Materials Ageing and Life Management
,
Raj
B.
,
Bhanu Sankara Rao
K.
,
Jayakumar
T.
, and
Dayal
R. K.
, Eds.,
Allied
,
Chennai
,
2000
, pp.
K1
K14
.
18.
Weisse
,
M.
,
Wamukwamba
,
C. K.
,
Christ
,
H.-J.
, and
Mughrabi
,
H.
, “
The Cyclic Deformation and Fatigue Behavior of the Low Carbon Steel SAE 1045 in the Temperature Regime of Dynamic Strain Ageing
,”
Acta Metall. Mater.
, Vol.
41
,
1993
, pp.
2227
2233
. https://doi.org/10.1016/0956-7151(93)90392-6
19.
Sengupta
,
A.
and
Putatunda
,
S. K.
, “
Influence of Dynamic Strain Aging on the Near-Threshold Fatigue Crack Growth Behavior of a New Single Crystal Nickel-Based Superalloy
,”
Scripta Metall. Mater.
, Vol.
31
,
1994
, pp.
1163
1168
. https://doi.org/10.1016/0956-716X(94)90569-X
20.
Leverant
,
G. R.
and
Gell
,
M.
, “
The Influence of Temperature and Cyclic Frequency on the Fatigue Fracture of Cube Oriented Nickel-Base Superalloy Single Crystals
,”
Metall. Trans. A
, Vol.
6
,
1975
, pp.
367
371
. https://doi.org/10.1007/BF02667291
21.
Nani Babu
,
M.
,
Shashank Dutt
,
B.
,
Venugopal
,
S.
,
Sasikala
,
G.
,
Bhaduri
,
A. K.
,
Jayakumar
,
T.
, and
Raj
,
B.
, “
On the Anomalous Temperature Dependency of Fatigue Crack Growth of SS 316(N) Weld
,”
Mater. Sci. Eng. A
, Vol.
527
,
2010
, pp.
5122
5129
. https://doi.org/10.1016/j.msea.2010.04.075
22.
Samuel
,
E. I.
,
Choudhary
,
B. K.
, and
Bhanu Shankara Rao
,
K.
, “
Influence of Post-Welds Heat Treatment on the Tensile Properties of Modified 9Cr-1Mo Ferritic Steel Base Metal
,”
Mater. Sci. Technol.
, Vol.
23
,
2007
, pp.
992
999
. https://doi.org/10.1179/174328407X161295
23.
Noroozi
,
A. H.
,
Glinka
,
G.
, and
Lambert
,
S. A.
, “
Study of the Stress Ratio Effects on Fatigue Crack Growth Using the Unified Two-Parameter Fatigue Crack Growth Driving Force
,”
Int. J. Fatigue
, Vol.
29
,
2007
, pp.
1616
1633
. https://doi.org/10.1016/j.ijfatigue.2006.12.008
24.
Chaswal
,
V.
,
Sasikala
,
G.
,
Ray
,
S. K.
,
Mannan
,
S. L.
, and
Raj
,
B.
, “
Fatigue Crack Growth Mechanism in Aged 9Cr–1Mo Steel: Threshold and Paris Regimes
,”
Mater. Sci. Eng. A
, Vol.
395
,
2005
, pp.
251
264
. https://doi.org/10.1016/j.msea.2004.12.026
25.
Cotterill
,
P. J.
and
Knott
,
J. F.
, “
Effects of Temperature and Environment on Fatigue Crack Growth Mechanisms in a 9 % Cr 1 % Mo Steel
,”
Acta Metall. Mater.
, Vol.
40
,
1992
, pp.
2753
2764
. https://doi.org/10.1016/0956-7151(92)90345-F
26.
Lee
,
W. H.
,
Shiue
,
R. K.
, and
Chen
,
C.
, “
Mechanical Properties of Modified 9Cr–1Mo Steel Welds With Notches
,”
Mater. Sci. Eng. A
, Vol.
356
,
2003
, pp.
153
161
. https://doi.org/10.1016/S0921-5093(03)00115-1
27.
James
,
M. N.
, “
Intergranular Crack Paths During Fatigue in Interstitial-Free Steels
,”
Eng. Fract. Mech.
, Vol.
77
,
2010
,
1998
2007
. https://doi.org/10.1016/j.engfracmech.2009.12.006
28.
Abuzaid
,
W. Z.
,
Sangid
,
M. D.
,
Carroll
,
J. D.
,
Sehitoglu
,
H.
, and
Lambros
,
J.
, “
Slip Transfer and Plastic Strain Accumulation Across Grain Boundaries in Hastelloy X
,”
J. Mech. Phys. Solids
, Vol.
60
,
2012
, pp.
1201
1220
. https://doi.org/10.1016/j.jmps.2012.02.001
29.
Sangid
,
M. D.
, “
The Physics of Fatigue Crack Initiation
,”
Int. J. Fatigue
, Vol.
57
,
2013
, pp.
58
72
.
30.
Sangid
,
M. D.
,
Ezaz
,
T.
,
Sehitoglu
,
H.
, and
Robertson
,
I. M.
, “
Energy of Slip Transmission and Nucleation at Grain Boundaries
,”
Acta Mater.
, Vol.
59
,
2011
, pp.
283
296
. https://doi.org/10.1016/j.actamat.2010.09.032
31.
Sudhakar
,
K. V.
,
Bag
,
A.
,
Dwarakadasa
,
E. S.
, and
Ray
,
K. K.
, “
Effect of Corrosive Medium on Fatigue Crack Growth Behavior and Fracture in High Martensite Dual Phase Steel
,”
Bull. Mater. Sci.
, Vol.
22
,
1999
, pp.
1029
1036
. https://doi.org/10.1007/BF02745616
32.
Balbi
,
M.
,
Avalos
,
M.
,
Bartali
,
A.
, and
El Alvarez-Armas
,
I.
, “
Microcrack Growth and Fatigue Behavior of a Duplex Stainless Steel
,”
Int. J. Fatigue
, Vol.
31
,
2009
, pp.
2006
2013
. https://doi.org/10.1016/j.ijfatigue.2008.12.007
33.
Kang
,
T. H.
,
Li
,
D. M.
,
Lee
,
Y. D.
, and
Lee
,
C. S.
, “
Alloying and Aging Effects on the Fatigue Crack Growth of Duplex Stainless Steels
,”
Mater. Sci. Eng. A
, Vol.
251
,
1998
, pp.
192
199
. https://doi.org/10.1016/S0921-5093(98)00587-5
34.
Rho
,
B. S.
,
Hong
,
H. U.
, and
Nam
,
S. W.
, “
The Effect of δ-Ferrite on Fatigue Cracks in 304L Steels
,”
Int. J. Fatigue
, Vol.
22
,
2000
, pp.
683
690
. https://doi.org/10.1016/S0142-1123(00)00043-8
35.
Mutoh
,
Y.
,
Korda Akhmad
,
A.
,
Miyashita
,
Y.
, and
Sadasue
,
T.
, “
Stress Shielding and Fatigue Crack Growth Resistance in Ferritic–Pearlitic Steel
,”
Mater. Sci. Eng. A
, Vols.
468–470
,
2007
, pp.
114
119
. https://doi.org/10.1016/j.msea.2006.07.171
36.
Mutoh
,
Y.
,
Takahashi
,
M.
, and
Takeuchi
,
M.
, “
Fatigue Crack Growth in Several Ceramic Materials
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
16
,
1993
, pp.
875
890
. https://doi.org/10.1111/j.1460-2695.1993.tb00126.x
37.
Mutoh
,
Y.
and
Takahashi
,
M.
, “
Significance of Ktip in Fatigue Crack Growth Behavior of Silicon Nitride
,”
Proceedings of the International Conference on Advanced Materials’93 I/A, Ceramics, Powders, Corrosion and Advanced Processing, Transactions of the Materials Research Society of Japan
, Vol.
14A
,
Elsevier
,
Amsterdam, The Netherlands
,
1994
, pp.
379
382
.
38.
Mutoh
,
Y.
,
Takahashi
,
M.
, and
Kanagawa
,
A.
,
Cyclic Deformation, Fracture, Nondestructive Evaluation of Advanced Materials
, Vol.
2
,
Mitchell
M. R.
and
Buck
O.
, Eds., ASTM STP 1184,
ASTM International
,
West Conshohocken, PA
,
1994
, pp.
19
31
.
39.
Kishore
,
R.
,
Singh
,
R. N.
,
Sinha
,
T. K.
, and
Kashyap
,
B. P.
, “
Serrated Flow in a Modified 9Cr-1Mo Steel
,”
Scripta Metall. Mater.
, Vol.
32
,
1995
, pp.
1297
1300
. https://doi.org/10.1016/0956-716X(94)00020-I
40.
Kishore
,
R.
,
Singh
,
R. N.
,
Sinha
,
T. K.
, and
Kashyap
,
B. P.
, “
Effect of Dynamic Strain Ageing on the Tensile Properties of a Modified 9Cr–1Mo Steel
,”
J. Mater. Sci.
, Vol.
32
,
1997
, pp.
437
442
. https://doi.org/10.1023/A:1018569803900
41.
Choudhary
,
B. K.
,
Bhanu Sankara Rao
,
K.
,
Mannan
,
S. L.
, and
Kashyap
,
B. P.
, “
Influence of Prior Thermal Ageing on Tensile Deformation and Fracture Behavior of Forged Thick Section 9Cr–1Mo Ferritic Steel
,”
J. Nucl. Mater.
, Vol.
273
,
1999
, pp.
315
325
. https://doi.org/10.1016/S0022-3115(99)00051-3
42.
Roy
,
A. K.
,
Kumar
,
P.
, and
Maitra
,
D.
, “
Dynamic Strain Ageing of P91 Grade Steels of Varied Silicon Content
,”
Mater. Sci. Eng. A
, Vol.
499
,
2009
, pp.
379
386
. https://doi.org/10.1016/j.msea.2008.08.027
43.
Babu
,
N. M.
,
Sasikala
,
G.
,
Shashank Dutt
,
B.
,
Venugopal
,
S.
,
Albert
,
S. K.
,
Bhaduri
,
A. K.
, and
Jayakumar
,
T.
, “
Investigations on Influence of Dynamic Strain Ageing on Fatigue Crack Growth Behavior of P91 Steel
,”
Int. J. Fatigue
, Vol.
43
,
2012
, pp.
242
245
. https://doi.org/10.1016/j.ijfatigue.2012.02.022
44.
Gangloff
,
R. P.
,
Environment Induced Cracking of Metals
,
Gangloff
R. P.
and
Ives
M. B.
, Eds.,
NACE International
,
Houston
,
1990
, pp.
55
109
.
45.
Andresen
,
P. L.
and
Ford
,
F. P.
, “
Life Prediction by Mechanistic Modeling and System Monitoring of Environmental Cracking of Iron and Nickel Alloys in Aqueous Systems
,”
Mater. Sci. Eng. A
, Vol.
103
,
1988
, pp.
167
184
. https://doi.org/10.1016/0025-5416(88)90564-2
46.
Simonovic
,
D.
,
Ande
,
C. K.
,
Duff
,
A. I.
,
Syahputra
,
F.
, and
Sluiter
M. H. F.
, “
Diffusion of Carbon in bcc Fe in the Presence of Si
,”
Phys. Rev. B
, Vol.
81
,
2010
, p. 054116. https://doi.org/10.1103/PhysRevB.81.054116
This content is only available via PDF.
You do not currently have access to this content.