Abstract

Different approaches for modelling creep–fatigue (CF) interaction are used on strain controlled creep fatigue data of 9Cr–1Mo-VNb (P91) steel and assessed with the target of finding suitable candidates for use in design rules. The assessed models include time, ductility, and strain energy-based creep-fatigue interaction methods and two simplified models. For the interaction diagram-based models, the challenge of acquiring representative creep damage fractions from the dynamic material response, i.e., cyclic softening with changing relaxation behaviour is addressed. In addition, the interaction diagram approaches are discussed in the light of known (fatigue) material scatter and defining representative cycles for CF data. The performance of the model are presented and also compared against the RCC–MR design code methodology. It is shown that the fitting accuracy of the complex interaction models vary significantly and that modified ductility based models seem to be less susceptible to changes in supporting creep and relaxation models. Successful and also superior prediction of the CF number of cycles to failure for Grade 91 steel was accomplished by simplified methods with much less fitting parameters. The practicality in using interaction diagram methods for design purposes, where simplicity is a key issue, is questioned.

References

1.
ASME,
Section III Division 1 Sub-Section NH
,
ASME
,
New York
,
2007
.
2.
RCC-MR,
Design and Construction Rules for Mechanical Components of FBR Nuclear Islands
,
AFCEN
,
Paris, France
,
2007
.
3.
R5,
Assessment Procedure for the High Temperature Response of Structures Issue 3
,
British Energy
,
Gloucester, UK
,
2003
.
4.
High Pressure Institute of Japan, “
Creep-Fatigue Life Evaluation Scheme for Ferritic Component at Elevated Temperature
,”
HPIS C107 TR 2005
,
High Pressure Institute of Japan
,
Tokyo
,
2005
.
5.
ASME
,
ASME Boiler and Pressure Vessel Code Section VIII, Division 2. Rules for Construction of Pressure Vessels—Alternative Rules
,
ASME
,
New York
,
2008
.
6.
API 579-1/ASME FFS-1,
Fitness-For-Service
,
ASME
,
New York
,
2007
.
7.
Viswanathan
,
R.
,
Damage Mechanisms and Life Assessment of High Temperature Components
,
ASM International
,
1989
.
8.
Skelton
,
R. P.
, “
Creep and High-Temperature Failure
,”
Comprehensive Structural Integrity: Fracture of Materials from Nano to Macro
, Vol.
3
,
R.O.R. I.
Milne
,
R. O.
Ritchie
, and
B.
Karihaloo
, Eds.,
Elsevier
, New York,
2004
.
9.
Tai
,
A.
and
Yukio
,
T.
, “
Collect Available Creep-Fatigue Data and Study Existing Creep–Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR
,”
DOE/ASME Generation IV Materials Project JAEA Task 5
,
DOE
,
Washington, DC
,
2007
.
10.
Tai
,
A.
, “
Update and Improve Subsection NH Alternative Simplified Creep-Fatigue Design Methods
,”
DOE/ASME Generation IV Materials Project JAEA Task 10
,
DOE
,
Washington, DC
,
2009
.
11.
Bernard
,
R.
,
Improvement of ASME NH for Grade 91, AREVA, STP-NU-013
,
ASME
,
New York
,
2008
.
12.
ECCC Recommendations,
Creep Data Validation and Assessment Procedures
,
ERA Technology Ltd.
,
Leatherhead, UK
,
2001
.
13.
Manson
,
S. S.
,
Halford
,
G. R.
, and
Hirschberg
,
M. H.
, “
Creep-Fatigue Analysis by Strain-Range Partitioning
,”
NASA Technical Memorandum TM X-67838
,
NASA
,
Washington, DC
,
1971
.
14.
Manson
,
S. S.
, “
A Simple Procedure for Estimating High-Temperature Low Cycle Fatigue
,”
Exp. Mech.
, Vol.
8
, No.
8
,
1968
, pp.
349
355
. https://doi.org/10.1007/BF02326037
15.
Holmström
,
S.
,
Pohja
,
R.
,
Nurmela
,
A.
,
Moilanen
,
P.
, and
Auerkari
,
P.
, “
Creep and Creep–Fatigue Behaviour of 316 Stainless Steel
,”
Proc. Eng.
, Vol.
55
,
2013
, pp.
160
164
. https://doi.org/10.1016/j.proeng.2013.03.236
16.
Holmström
,
S.
and
Auerkari
,
P.
, “
A Robust Model for Creep-Fatigue Life Assessment
,”
Mater. Sci. Eng. A
, Vol.
559
,
2013
, pp.
333
335
. https://doi.org/10.1016/j.msea.2012.08.107
17.
Spindler
,
M. W.
, “
The Multiaxial and Uniaxial Creep Ductility of Type 304 Steel as a Function of Stress and Strain Rate
,”
Mater. High Temp.
, Vol.
21
, No.
1
,
2004
, pp.
47
54
.
18.
Spindler
,
M. W.
, “
The Prediction of Creep Damage in Type 347 Weld Metal. Part I: The Determination of Material Properties from Creep and Tensile Tests
,”
Int. J. Pressure Vessels Piping
, Vol.
82
, No.
3
,
2005
, pp.
175
184
. https://doi.org/10.1016/j.ijpvp.2004.09.003
19.
Spindler
,
M. W.
, “
The Prediction of Creep Damage in Type 347 Weld Metal: Part II Creep Fatigue Tests
,”
Int. J. Pressure Vessels Piping
, Vol.
82
, No.
3
,
2005
, pp.
185
194
. https://doi.org/10.1016/j.ijpvp.2004.09.004
20.
Payten
,
W. M.
,
Dean
,
D. W.
, and
Snowden
,
K. U.
, “
A Strain Energy Density Method for the Prediction of Creep–Fatigue Damage in High Temperature Components
,”
Mater. Sci. Eng. A
, Vol.
527
, Nos.
7–8
,
2010
, pp.
1920
1925
. https://doi.org/10.1016/j.msea.2009.11.028
21.
Payten
,
W. M.
,
Dean
,
D.
, and
Snowden
,
K. U.
, “
Analysis of Creep Ductility in a Ferritic Martensitic Steel Using a Hybrid Strain Energy Technique
,”
Mater. Des.
, Vol.
33
,
2012
, pp.
491
495
. https://doi.org/10.1016/j.matdes.2011.04.054
22.
Payten
,
W. M.
,
Dean
,
D. W.
, and
Snowden
,
K. U.
, “
Creep-fatigue Prediction of Low Alloy Ferritic Steels Using a Strain Energy Based Methodology
,”
Proceedings of the ASME 2009 Pressure Vessels and Piping Conference
, Vol.
6
,
Prague, Czech Republic
, July 26–30,
2009
,
Pressure Vessels and Piping Division, ASME
,
New York
, pp.
1403
1410
.
23.
NIMS, “
NIMS Creep Data Sheet No. 43
,” NIMS, Washington, DC,
1996
.
24.
Feltham
,
P. J.
, “
Stress Relaxation in Copper and Alpha-Brasses at Low Temperatures
,”
J. Inst. Metals
, Vol.
89
,
1960
, pp.
210
214
.
25.
Takahashi
,
Y.
, “
Study on Creep–Fatigue Evaluation Procedures for High-Chromium Steels—Part I: Test Results and Life Prediction Based on Measured Stress Relaxation
,”
Int. J. Pressure Vessels Piping
, Vol.
85
, No.
6
,
2008
, pp.
406
422
. https://doi.org/10.1016/j.ijpvp.2007.11.008
26.
Takahashi
,
Y.
, “
Study on Creep-Fatigue Evaluation Procedures for High Chromium Steels–Part II: Sensitivity to Calculated Deformation
,”
Int. J. Pressure Vessels Piping
, Vol.
85
, No.
6
,
2008
, pp.
423
440
. https://doi.org/10.1016/j.ijpvp.2007.11.006
27.
Krempl
,
E.
and
Wundt
,
B. M.
, “
Hold Time Effects in High Temperature Low Cycle Fatigue
,”
ASTM STP489
,
ASTM International
,
West Conshohocken, PA
,
1971
.
28.
Wilshire
,
B.
,
Scharming
,
P. J.
, and
Hurst
,
R.
, “
A New Approach to Creep Data Assessment
,”
Mater. Sci. Eng. A
, Vol.
510–511
,
2009
, pp.
3
6
. https://doi.org/10.1016/j.msea.2008.04.125
This content is only available via PDF.
You do not currently have access to this content.