Abstract

Procedures for the assessment of components subject to cyclic loading at high temperatures require material property input data that characterize the creep-fatigue deformation response and resistance to cracking. For many years, there was no testing standard or code of practice to ensure that such information was generated in a uniform way. This was mainly because the creep-fatigue test data requirements for organizations in various industrial sectors appeared to be so different that the need for standardization was questioned. In the mid-2000s, it was recognized that even though it would make no sense to be prescriptive about such details as cycle shape, there were many aspects of creep-fatigue testing for which guidance would be beneficial to ensure acceptable uniformity in deformation and endurance data generation. In response to this realization, the state of the art relating to creep-fatigue interaction was extensively reviewed by an international group of specialists, and the generated knowledge base was used to underpin a new ASTM testing standard, ASTM E2714-09. The gathered knowledge is reviewed. There is a requirement for all ASTM standards to include a precision and bias statement, and an international interlaboratory creep-fatigue test comparison activity was facilitated to form the basis of this section of ASTM E2714-09. An integral part of the guidance given in the new standard is the recommendation for post-test metallurgical inspection and the way in which this information can be used to give added value to creep-fatigue crack initiation endurance results. The evidence gathered from this study is also examined.

References

1.
Thomas
,
G. B.
,
Hales
,
R.
,
Ramsdale
,
J.
,
Suhr
,
R. W.
, and
Sumner
,
G.
, “
A Code of Practice for Constant-Amplitude Low Cycle Fatigue Testing at Elevated Temperature
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
12
, No.
2
,
1989
, pp.
135
153
. https://doi.org/10.1111/j.1460-2695.1989.tb00519.x
2.
A 03-403
,
1990
, “
Produits métalliques: Pratique des essais de fatigue oligocyclique [Metallic Products: Practice (or Procedure) for Low Cycle Fatigue Testing]
,”
Normalisation Francais
,
Paris
.
3.
BS7270
,
2000
, “
Method for Constant Amplitude Strain Controlled Fatigue Testing
,”
British Standards Institution (BSI)
,
London
.
4.
ASTM E606-04: Standard Practice for Strain-Controlled Fatigue Testing
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2004
.
5.
EN 3874
,
2003
, “
Test Methods for Metallic Materials—Constant Amplitude Force-controlled Low Cycle Fatigue Testing
,”
European Standard, Aerospace Series
,
European Committee for Standardisation (CEN)
,
Brussels
.
6.
EN 3988, 1998
, “
Test Methods for Metallic Materials—Constant Amplitude Strain-controlled Low Cycle Fatigue Testing
,”
European Standard, Aerospace Series
,
European Committee for Standardisation (CEN)
,
Brussels
.
7.
ISO 12106
,
2003
, “
Metallic Materials—Fatigue Testing—Axial Strain-controlled Method
,”
International Organization for Standardization
,
Geneva, Switzerland
.
8.
Sakane
,
M.
and
Yamaguchi
,
Y.
, “
High Temperature Low Cycle Fatigue Standard Testing—JSMS Recommendation
,”
Proceedings of the 4th Japan–China Bilateral Symposium on High Temperature Strength of Materials
,
Tsukuba, Japan
, June 11–13,
2001
,
NIMS
.
9.
Hales
,
R.
,
Holdsworth
,
S. R.
,
O’Donnell
,
M. P.
,
Perrin
,
I. J.
, and
Skelton
,
R. P.
, “
A Code of Practice for the Determination and Interpretation of Cyclic Stress-Strain Data
,”
Mater. High Temp.
, Vol.
19
, No.
4
,
2002
, pp.
165
186
. https://doi.org/10.3184/096034002783640332
10.
ASTM E2368-04
:
Standard Practice for Strain Controlled Thermomechanical Fatigue Testing
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2004
.
11.
Hähner
,
P.
,
Affeldt
,
E.
,
Beck
,
T.
,
Klingelhoffer
,
H.
,
Loveday
,
M. L.
, and
Rinaldi
,
C.
, “
Validated Code-of-practice for Strain-controlled Thermo-mechanical Fatigue Testing
,”
European Commission Joint Research Centre (JRC EUR) 22281
,
Petten
,
2006
.
12.
EN 10291
,
2000
, “
Metallic Materials—Uniaxial Creep Testing in Tension—Methods of Test
,”
European Committee for Standardisation (CEN)
,
Brussels
.
13.
EN 10319
,
2003
, “
Metallic Materials—Tensile Stress Relaxation Testing—Part 1: Procedure for Testing Machines
,”
European Committee for Standardisation (CEN)
,
Brussels
.
14.
Holdsworth
,
S. R.
, “
Component Assessment Data Requirements from Creep-Fatigue Tests
,”
Creep-Fatigue Interactions: Test Methods and Models, STP 1539
,
ASTM International
,
West Conshohocken, PA
,
2011
, pp.
3
22
.
15.
ASTM E2714-09
:
Standard Test Method for Creep-Fatigue Testing
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2009
.
16.
Holdsworth
,
S. R.
, “
Creep-Fatigue in Steam Turbine Materials
,”
Proceedings of the 6th International Conference on Advances in Material Technology for Fossil Power Plants
,
Santa Fe, NM
, Aug. 31–Sept. 3,
2010
,
EPRI/ASM
, pp.
487
503
.
17.
Miller
,
D. A.
and
Priest
,
R. H.
, “
Materials Response to Thermo-mechanical Strain Cycling
,”
High Temperature Fatigue: Properties and Prediction
,
R. P.
Skelton
, Ed.,
Elsevier
,
New York
,
1987
, pp.
113
175
.
18.
Leven
,
M. M.
, “
The Interaction of Creep and Fatigue for a Rotor Steel
,”
Exp. Mech.
, Vol.
13
, No.
9
,
1973
, pp.
353
372
. https://doi.org/10.1007/BF02324038
19.
Thomas
,
G.
and
Dawson
,
R. A. T.
, “
The Effect of Dwell Period and Cycle Type on High Strain Fatigue Properties of 1CrMoV Rotor Forgings at 500-550°C
,”
Proceedings of the International Conference on Engineering Aspects of Creep
, Sheffield, UK, Sept. 15–19,
1980
,
Institute of Mechanical Engineers
,
London
, pp.
167
173
.
20.
Holdsworth
,
S. R.
, “
Creep-Fatigue of High Temperatures Steels
,”
Mater. High Temp.
, Vol.
18
, No.
4
,
2001
, pp.
261
265
. https://doi.org/10.3184/096034001783640441
21.
ASME
, “
Rules for the Construction of Nuclear Facility Components: Subsection NH— Class 1 Components in Elevated Temperature Service
,”
ASME Boiler and Pressure Vessel Code
,
ASME
,
New York
,
2001
.
22.
TRD301
,
1978
, “
Annex I—Design: Calculation for Cyclic Loading Due to Pulsating Internal Pressure or Combined Changes of Internal Pressure and Temperature, Technical Rules for Steam Boilers
,”
Technische Regeln für Dampfkessel
,
Essen
.
23.
RCC-MR
,
1985
, “
Design and Construction Rules for Mechanical Components of FBR Nuclear Islands, Section I—Nuclear Islands Components
,”
AFCEN
,
Paris
.
24.
R5
,
2003
, “
An Assessment Procedure for the High Temperature Response of Structures
,”
British Energy Generation Ltd
,
Barnwood, UK
.
25.
Halford
,
G. R.
and
Manson
,
S. S.
, “
Life Prediction of Thermal Mechanical Fatigue Using Strain Range Partitioning
,”
Thermal Fatigue of Materials and Components, STP 612
,
D. A.
Spera
and
D. F.
Mowbray
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1976
, pp.
239
254
.
26.
Hoffelner
,
W.
, “
Creep-Fatigue Life Determination of Grade 91 Steel Using Strain-range Separation Method
,”
Proceedings of the ASME Pressure Vessel and Piping Conference on Sustainable Energy for the Third Millennium
, Prague, Czech Republic, July 26–30,
2009
,
ASME
,
New York
.
27.
STP-PT-027
,
2009
, “
Extend Low Chrome Steel Fatigue Rules
,”
ASME Standards Technology
,
New York
.
28.
Skelton
,
R. P.
and
Gandy
,
D.
, “
Creep-Fatigue Damage Accumulation and Interaction Diagram Based on Metallographic Interpretation of Mechanisms
,”
Mater. High Temp.
, Vol.
25
, No.
1
,
2008
, pp.
27
54
. https://doi.org/10.3184/096034007X300494
29.
Holdsworth
,
S. R.
and
Gandy
,
D.
, “
Towards a Standard for Creep-Fatigue Testing
,”
Proceedings of the 5th International Conference on Advances in Materials Technology for Fossil Power Plants
,
Marco Island, FL
, Oct. 3–5,
2007
, pp.
689
701
.
30.
ISO 7500-1
,
2004
, “
Metallic Materials—Verification of Static Uniaxial Testing Machines—Part 1. Tension/Compression Testing Machines—Verification and Calibration of the Force Measuring System
,”
International Organization for Standardization
,
Geneva, Switzerland
.
31.
Kandil
,
F. A.
, “
Measurement of Bending in Uniaxial Low Cycle Fatigue Testing
,”
NPL Measurement Good Practice Guide No. 1 NPLMMS001
,
NPL (National Physical Laboratory)
,
Teddington, UK
,
1998
.
32.
ASTM E1012
:
Standard Practice for Verification of Specimen Alignment under Tensile Loading
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
1999
.
33.
EN ISO 9513
,
1999
, “
Metallic Materials—Calibration of Extensometers Used in Axial Testing
,”
International Organization for Standardization
,
Geneva, Switzerland
.
34.
EN 60584-1
,
1996
, “
Thermocouples—Reference Tables (IEC 584-1)
,”
European Committee for Standardisation (CEN)
,
Brussels
.
35.
EN 60584-1
,
1996
, “
Thermocouples—Tolerances (IEC 584-2)
,”
European Committee for Standardisation (CEN)
,
Brussels
.
36.
Holdsworth
,
S. R.
,
Maschek
,
A. K. F.
,
Binda
,
L.
, and
Mazza
,
E.
, “
Effect of Prior Cyclic Damage Removal on High Temperature Low Cycle Fatigue Endurance
,”
Procedia Engineering
, Vol.
2
,
2010
, pp.
379
386
.
37.
ASTM E691-09
:
Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2009
.
38.
Kaae
,
J.
,
Meurer
,
H. P.
,
Raule
,
G.
,
Schaster
,
H.
,
Strizak
,
J. P.
, and
Williams
,
R.
, “
Reproducibility of High Temperature LCF Tests on Alloy 800H Performed in 6 U.S. and German Laboratories
,”
Proceedings of the Symposium on Low Cycle Fatigue—Directions for the Future
,
Bolton Landing, NY
,
1985
.
39.
Thomas
,
G.
and
Varma
,
R.
, “
Review of BCR/VAMAS Low Cycle Fatigue Intercomparison Programme
,”
Harmonization of Testing Practice for High Temperature Materials
,
M.
Loveday
and
T.
Gibbons
, Eds.,
Elsevier Applied Science
,
London
,
1992
, pp.
155
185
.
40.
Verrilli
,
M.
,
Ellis
,
J.
, and
Swindeman
,
R.
, “
Current Activities in Standardization of High Temperature Low Cycle Fatigue Testing Techniques in the United States
,”
Harmonization of Testing Practice for High Temperature Materials
,
M.
Loveday
and
T.
Gibbons
, Eds.,
Elsevier Applied Science
,
London
,
1992
, pp.
187
209
.
41.
Scholz
,
A.
, “
Results of a Low Cycle Fatigue Inter-laboratory Comparison on 1CrMoNiV Rotor Steel at Elevated Temperature
,”
Mater. High Temp.
, Vol.
27
, No.
2
,
2010
, pp.
117
125
. https://doi.org/10.3184/096034010X12717819915268
42.
Asayama
,
T.
, “
Alternative Simplified Creep-Fatigue Design Methods
,”
Japanese Atomic Energy Authority (JAEA) Task 10 Final Report
,
2009
.
43.
Kalyanasundaram
,
V.
,
Saxena
,
A.
,
Narasimhachary
,
S.
, and
Dogan
,
B.
, “
ASTM Round-robin on Creep-Fatigue and Creep Behavior of P91 Steel
,”
Creep-Fatigue Interactions: Test Methods and Models, STP 1539
,
A.
Saxena
and
B.
Dogan
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2011
, pp.
23
40
.
44.
Final Report on Round-Robin Conducted in Support of Test Method for Creep-Fatigue Testing
,
EPRI
,
Palo Alto, CA
,
2013
.
45.
National Research Institute for Metals (NRIM)
, “
Data Sheets on Elevated-temperature Time-dependent Low-cycle Fatigue Properties of ASTM A387 Grade 91 (9Cr-1Mo) Steel Plate for Pressure Vessels
,”
Data Sheet 78
,
NRIM
,
Tokyo, Japan
,
1993
.
46.
Fournier
,
B.
,
Sauzay
,
M.
,
Barcelo
,
F.
,
Rauch
,
E.
,
Renault
,
A.
,
Cozzika
,
T.
,
Dupuy
,
L.
, and
Pineau
,
A.
, “
Creep-Fatigue Interactions in a 9 pct Cr-1 pct Mo Martensitic Steel: Part II. Microstructure Evolutions
,”
Metall. Mater. Trans. A
, Vol.
40A
,
2009
, pp.
330
341
. https://doi.org/10.1007/s11661-008-9687-y
47.
Holdsworth
,
S. R.
,
Mazza
,
E.
, and
Jung
,
A.
, “
The Response of 1CrMoV Rotor Steel to Service-Cycle Thermo-mechanical Fatigue Testing
,”
J. Test. Eval.
, Vol.
32
, No.
4
,
2004
, pp.
255
261
.
48.
Holdsworth
,
S. R.
,
Skelton
,
R. P.
, and
Dogan
,
B.
, “
Code of Practice for the Measurement and Analysis of High Strain Creep-Fatigue Short Crack Growth
,”
Mater. High Temp.
, Vol.
27
(
4
),
2010
, pp.
265
283
. https://doi.org/10.3184/096034010X12901002809519
This content is only available via PDF.
You do not currently have access to this content.