Abstract

A long term effort has been underway to develop a mechanism-based model for life prediction under thermo-mechanical fatigue (TMF) cycling. A model has been developed which is based upon the impingement of slip bands upon oxidized regions and subsequent initiation of a crack due to stress concentration. The concept of an effective cycle temperature, Teff, and the dynamic nature of the material are critical components of the model and result in the ability to produce very accurate life predictions. It has also been shown that the model is capable of addressing complexities such as imposed high cycle fatigue (HCF) while still producing excellent agreement with the experiment. However, given the fact that this material is used for jet engine turbine blades and that such blades have cooling holes which act as notches, the next step in the development of this model is to incorporate it into a notched environment. The principal features of the TMF model are reviewed and a strategy for full integration into notched fatigue life prediction is discussed. Recent experimental results are presented which are based upon simulating smooth bar conditions at the notch root and a first approach to numerical simulation (called Q fit) is presented. Suggestions for further research are discussed.

References

1.
Neu
,
R. W.
and
Sehitoglu
,
H.
, “
Thermomechanical Fatigue, Oxidation, and Creep. Part II. Life Prediction
,”
Met. Trans. A
, Vol.
20A
,
1989
, pp.
1769
1783
. https://doi.org/10.1007/BF02663208
2.
Staroselsky
,
A.
and
Cassenti
,
B. N.
, “
On Creep, Plasticity, and Fatigue of Single Crystal Superalloy
,”
Int. J. Solids Struct.
, Vol.
48
,
2011
, pp.
2060
2075
. https://doi.org/10.1016/j.ijsolstr.2011.03.011
3.
Antolovich
,
S. D.
,
Liu
,
S.
, and
Baur
,
R.
, “
Low Cycle Fatigue Behavior of René 80 at Elevated Temperatures
,”
Met. Trans.
, Vol.
12A
,
1981
, pp.
473
481
. https://doi.org/10.1007/BF02648545
4.
Antolovich
,
S. D.
and
Jayaraman
,
N.
, “
The Effect of Microstructure on Fatigue Behavior of Nickel Base Alloys
,”
Fatigue: Environment and Temperature Effects
,
Burke
J. J.
and
Weiss
V.
, Eds.,
Plenum Press
,
New York
,
1983
, pp.
119
144
.
5.
Antolovich
,
S. D.
,
Rosa
,
E.
, and
Pineau
,
A.
, “
Low Cycle Fatigue of René 77 at Elevated Temperatures
,”
Mater. Sci. Eng.
, Vol.
47
,
1981
, pp.
47
57
. https://doi.org/10.1016/0025-5416(81)90040-9
6.
Lerch
,
B. A.
,
Antolovich
,
S. D.
, and
Jayaraman
,
N.
, “
A Study of Fatigue Damage Mechanisms in Waspaloy from 25°C–800°C
,”
Mater. Sci. Eng.
, Vol.
66
,
1984
, pp.
151
166
. https://doi.org/10.1016/0025-5416(84)90177-0
7.
Antolovich
,
S. D.
and
Armstrong
,
R. W.
, “
Plastic Strain Localization in Metals: Origins and Consequences
,”
Prog. Mater. Sci.
, Vol.
59
,
2013
, pp.
1
160
. https://doi.org/10.1016/j.pmatsci.2013.06.001
8.
Amaro
,
R. L.
,
2010
, “
Thermomechanical Fatigue Crack Formation in a Single Crystal Ni–base Superalloy
,” Ph.D. thesis,
Georgia Institute of Technology
, Atlanta, GA.
9.
Amaro
,
R. L.
,
Antolovich
,
S. D.
,
Neu
,
R. W.
,
Fernandez-Zelaia
,
P.
, and
Hardin
,
W.
, “
Thermomechanical Fatigue and Bithermal–Thermomechanical Fatigue of a Nickel-Base Single Crystal Superalloy
,”
Int. J. Fatigue
, Vol.
42
,
2012
, pp.
165
171
. https://doi.org/10.1016/j.ijfatigue.2011.08.017
10.
Amaro
,
R. L.
,
Antolovich
,
S. D.
, and
Neu
,
R. W.
, “
Mechanism-Based Life Model for Out-of-Phase Thermomechanical Fatigue in Single Crystal Ni-Base Superalloys
,”
Fat. Fract. Eng. Mater. Struct.
, Vol.
35
,
2012
, pp.
658
671
. https://doi.org/10.1111/j.1460-2695.2011.01660.x
11.
Amaro
,
R. L.
,
Antolovich
,
S. D.
,
Neu
,
R. W.
, and
Staroselsky
,
A.
, “
Physics-Based Modeling of Thermo-Mechanical Fatigue in PWA 1484
,”
Proceedings of the Superalloys 2012—12th International Symposium on Superalloys
,
Huron
E. S.
,
Reed
R. C.
,
Hardy
M. C.
,
Mills
M. J.
,
Montero
R. E.
,
Portella
P. D.
and
Telesman
J.
, Eds.,
TMS
,
Warrendale, PA
,
2012
, pp.
481
490
.
12.
Kersey
,
R. K.
,
Staroselsky
,
A.
,
Dudzinski
,
D. C.
, and
Genest
,
M.
, “
Thermomechanical Fatigue Crack Growth from Laser Drilled Holes in Single Crystal Nickel Based Superalloy
,”
Int. J. Fatigue
, Vol.
55
,
2013
, pp.
183
193
. https://doi.org/10.1016/j.ijfatigue.2013.06.006
13.
Grant
,
B. M. B.
,
Stone
,
H. J.
,
Withers
,
P. J.
, and
Preuss
,
M.
, “
High Temperature Strain Field Measurement Using Digital Image Correlation
,”
J. Strain Anal. Eng. Des.
, Vol.
44
,
2009
, pp.
263
271
. https://doi.org/10.1243/03093247JSA478
14.
Fernandez-Zelaia
,
P.
,
2012
, “
The Effect of Stress Elevators in Thermomechanical Fatigue Crack Formation in Nickel-base Superalloys
,” M.S. thesis,
Georgia Institute of Technology
, Atlanta, GA.
15.
Adair
,
B.
,
2013
, “
Characterization and Modeling of Thermo-Mechanical Fatigue Crack Growth in a Single Crystal Superalloy
,” Ph.D. thesis,
Georgia Institute of Technology
, Atlanta, GA.
16.
Cetel
,
A. D.
and
Duhl
,
D. N.
, “
Second Generation Nickel-Base Single Crystal Superalloy
,”
Proceedings of the Superalloys1988—11th International Symposium on Superalloys
,
Reed
R. C.
,
Green
K. A.
,
Caron
P.
,
Gabb
T. P.
,
Fahrmann
M. G.
,
Huron
E. S.
and
Woodard
S. A.
, Eds.,
TMS
,
Warrendale, PA
,
2012
, pp.
235
244
.
17.
Pineau
,
A.
, “
Influence of Uniaxial Stress on the Morphology of Coherent Precipitates During Coarsening—Elastic Energy Considerations
,”
Acta Metall.
, Vol.
24
,
1976
, pp.
559
564
. https://doi.org/10.1016/0001-6160(76)90101-2
18.
Shenoy
,
M. M.
,
Gordon
,
A. P.
,
McDowell
,
D. L.
, and
Neu
,
R. W.
, “
Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy
,”
J. Eng. Mater. Technol.
, Vol.
127
,
2005
, pp.
325
336
. https://doi.org/10.1115/1.1924560
19.
Fernandez-Zelaia
,
P.
and
Neu
,
R. W.
, “
Influence of Notch Severity on Thermomechanical Fatigue Life of a Directionally Solidified Ni-base Superalloy
,”
Fat. Fract. Eng. Mater. Struct.
,
2014
(in press).
This content is only available via PDF.
You do not currently have access to this content.