Abstract

The aim of this paper is to study the mechanical tensile properties of open-cell foam structures on the cell size variation by numerical simulations. For this purpose, random Laguerre tessellations were used, which allow the creation of foam structures with strongly varying cell sizes. First, a model was fitted to real open-cell foams based on x-ray computed tomography (XCT) scans by parameter optimization. Two more virtual foam models with different cell size variations were produced according to the first fitted one. Tensile properties of the model realizations were computed by finite-element analysis using beam elements. The numerical results were presented and discussed.

References

1.
Gibson
,
L. J.
and
Ashby
,
M. F.
,
Cellular Solids
,
Cambridge University Press
,
Cambridge
,
2001
.
2.
Jang
,
W.-Y.
and
Kyriakides
,
S.
, “
On the Crushing of Aluminum Open-Cell Foams: Part II. Analysis
,”
Int. J. Solids Struct.
, Vol.
46
(
3–4
),
2009
, pp.
635
650
. https://doi.org/10.1016/j.ijsolstr.2008.10.016
3.
Kaoua
,
S.-A.
,
Dahmoun
,
D.
,
Belhadj
,
A.-E.
, and
Azzaz
,
M.
, “
Finite Element Simulation of Mechanical Behaviour of Nickel-Based Metallic Foam Structures
,”
J. Alloys Comp
., Vol.
471
(
1–2
)
2009
, pp.
147
152
. https://doi.org/10.1016/j.jallcom.2008.03.069
4.
San Marchi
,
C.
and
Mortensen
,
A.
, “
Deformation of Open-Cell Aluminum Foam
,”
Acta Mater.
, Vol.
49
(
19
),
2001
, pp.
3959
3969
. https://doi.org/10.1016/S1359-6454(01)00294-4
5.
Weaire
,
D.
and
Phelan
,
R.
, “
A Counterexample to Kelvin's Conjecture on Minimal Surfaces
,”
Phil. Mag. Lett.
, Vol.
69
,
1994
, pp.
107
110
. https://doi.org/10.1080/09500839408241577
6.
Thomson
,
W.
, “
On the Division of Space With Minimum Partitional Area
,”
Phil. Mag.
, Vol.
24
(
151
),
1887
, pp.
503
514
. https://doi.org/10.1080/14786448708628135
7.
Badiche
,
X.
,
Forest
,
S.
,
Guibert
,
T.
,
Bienvenu
,
Y.
,
Bartout
,
J.-D.
,
Ienny
,
P.
,
Croset
,
M.
, and
Bernet
,
H.
, “
Mechanical Properties and Non-Homogeneous Deformation of Open-Cell Nickel Foams: Application of the Mechanics of Cellular Solids and of Porous Materials
,”
Mater. Sci. Eng. A
, Vol.
289
(
1–2
),
2000
, pp.
276
288
. https://doi.org/10.1016/S0921-5093(00)00898-4
8.
Van der Burg
,
M. W. D.
,
Shulmeister
,
V.
,
Van der Geissen
,
E.
, and
Marissen
,
R.
, “
On the Linear Elastic Properties of Regular and Random Open-Cell Foam Models
,”
J. Cell. Plast.
, Vol.
33
(
1
),
1997
, pp.
31
54
.
9.
Borovinšek
,
M.
and
Ren
,
Z.
, “
Computational Modelling of Irregular Open-Cell Foam Behaviour Under Impact Loading
,”
Materialwissenschaft Werkstofftechnik
, Vol.
39
(
2
),
2008
, pp.
114
120
.
10.
Li
,
K.
,
Gao
,
X.-L.
, and
Subhash
,
G.
, “
Effects of Cell Shape and Cell Wall Thickness Variations on the Elastic Properties of Two-Dimensional Cellular Solids
,”
Int. J. Solids Struct.
, Vol.
42
(
5–6
),
2005
, pp.
1777
1795
. https://doi.org/10.1016/j.ijsolstr.2004.08.005
11.
Roberts
,
A. P.
and
Garboczi
,
E. J.
, “
Elastic Properties of Model Random Three-Dimensional Open-Cell Solids
,”
J. Mech. Phys. Solids
, Vol.
50
(
1
),
2002
, pp.
33
55
. https://doi.org/10.1016/S0022-5096(01)00056-4
12.
Silva
,
M. J.
and
Gibson
,
L. J.
, “
The Effects of Non-Periodic Microstructure and Defects on the Compressive Strength of Two-Dimensional Cellular Solids
,”
Int. J. Mech. Sci.
, Vol.
39
(
5
),
1997
, pp.
549
563
. https://doi.org/10.1016/S0020-7403(96)00065-3
13.
Zhu
,
H. X.
,
Hobdell
,
J. R.
, and
Windle
,
A. H.
, “
Effects of Cell Irregularity on the Elastic Properties of Open-Cell Foams
,”
Acta Mater.
, Vol.
48
(
20
),
2000
, pp.
4893
4900
. https://doi.org/10.1016/S1359-6454(00)00282-2
14.
Stoyan
,
D.
,
Kendall
,
W. S.
, and
Mecke
,
J.
,
Stochastic Geometry and Its Applications
,
John Wiley & Sons
,
New York
,
1995
.
15.
Roberts
,
A. P.
and
Garboczi
,
E. J.
, “
Elastic Moduli of Model Random Three-Dimensional Closed-Cell Cellular Solids
,”
Acta Mater.
, Vol.
49
(
2
),
2001
, pp.
189
197
. https://doi.org/10.1016/S1359-6454(00)00314-1
16.
Coster
,
M.
,
Arnould
,
X.
,
Chermant
,
J.-L.
,
El Moataz
,
A.
, and
Chartier
,
T.
, “
A Microstructural Model by Space Tessellation for a Sintered Ceramic: Cerine
,”
Image Anal. Stereol.
, Vol.
24
,
2005
, pp.
105
116
. https://doi.org/10.5566/ias.v24.p105-116
17.
Schwertel
,
J.
and
Stamm
,
H.
, “
Analysis and Modelling of Tessellations by Means of Image Analysis Methods
,”
J. Microsc.
, Vol.
186
,
1997
, pp.
198
209
. https://doi.org/10.1046/j.1365-2818.1997.1720734.x
18.
Chu
,
Z.
,
Mullen
,
R. L.
, and
Ballarini
,
R.
, “
Monte Carlo Simulation of Elastic Properties of Polycrystalline Materials Using the Johnson-Mehl Model
,”
Proceedings of the 14th ASCE Engineering Mechanics Division Conference
,
Austin
, May
2000
.
19.
Aurenhammer
,
F.
, “
Power Diagrams: Properties, Algorithms and Applications
,”
SIAM J. Comput.
, Vol.
16
(
1
),
1987
, pp.
78
96
. https://doi.org/10.1137/0216006
20.
Kanaun
,
S.
and
Tkachenko
,
O.
, “
Mechanical Properties of Open Cell Foams: Simulations by Laguerre Tesselation Procedure
,”
Int. J. Fract.
, Vol.
140
(
1–4
),
2006
, pp.
305
312
. https://doi.org/10.1007/s10704-006-0112-5
21.
Kraynik
,
A. M.
, “
The Structure of Random Foam
,”
Adv. Eng. Mater.
, Vol.
8
(
9
),
2006
, pp.
900
906
. https://doi.org/10.1002/adem.200600167
22.
Lautensack
,
C.
and
Zuyev
,
S.
, “
Random Laguerre Tessellations
,”
Adv. Appl. Prob.
, Vol.
40
(
3
),
2008
, pp.
630
650
. https://doi.org/10.1239/aap/1222868179
23.
Lautensack
,
C.
, “
Random Laguerre Tessellations
,” Ph.D. thesis,
University Karlsruhe
, Verlag Lautensack, Weiler bei Bingen,
2007
.
24.
Redenbach
,
C.
, “
Modelling Foam Structures Using Random Tessellations
,”
The 10th European Congress of Stereology and Image Analysis
, Vol.
4
, ISS ECS10,
2009
.
25.
Bezrukov
,
A.
,
Bargiel
,
M.
, and
Stoyan
,
D.
, “
Statistical Analysis of Simulated Random Packings of Spheres
,”
Part. Part. Syst. Character.
, Vol.
19
(
2
),
2001
, pp.
111
118
. https://doi.org/10.1002/1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M
26.
Elsner
,
A.
, “
Computergestützte Simulation und Analyse Zufälliger Dichter Kugelpackungen
,” Ph.D. thesis,
Technische Universität Bergakademie
, Freiberg,
2009
.
27.
Mościński
,
J.
,
Bargiel
,
M.
,
Rycerz
,
Z. A.
, and
Jacobs
,
P. W. M.
, “
The Force-Biased Algorithm for the Irregular Close Packing of Equal Hard Spheres
,”
Molec. Simul.
, Vol.
3
(
4
),
1989
, pp.
201
212
. https://doi.org/10.1080/08927028908031373
28.
Ashby
,
M. F.
, “
The Mechanical Properties of Cellular Solids
,”
Metall. Trans. A
, Vol.
14
,
1983
, pp.
1755
1768
. https://doi.org/10.1007/BF02645546
29.
Andrews
,
E.
,
Sanders
,
W.
, and
Gibson
,
L. J.
, “
Compressive and Tensile Behaviour of Aluminum Foams
,”
Mater. Sci. Eng.: A
, Vol.
270
(
2
),
1999
, pp.
113
124
. https://doi.org/10.1016/S0921-5093(99)00170-7
30.
Mangipudi
,
K. R.
and
Onck
,
P. R.
, “
Tensile Failure of Two-Dimensional Quasi-Brittle Foams
,”
Int. J. Solids Struct.
, Vol.
49
(
19–20
),
2012
, pp.
2823
2829
. https://doi.org/10.1016/j.ijsolstr.2012.03.002
31.
Gong
,
L.
,
Kyriakides
,
S.
, and
Jang
,
W.-Y.
, “
Compressive Response of Open-Cell Foams: Part I. Morphology and Elastic Properties
,”
Int. J. Solids Struct.
, Vol.
42
(
5–6
),
2005
, pp.
1355
1379
. https://doi.org/10.1016/j.ijsolstr.2004.07.023">10.1016/j.ijsolstr.2004.07.023
32.
Gong
,
L.
and
Kyriakides
,
S.
, “
Compressive Response of Open-Cell Foams: Part II. Initiation and Evolution of Crushing
,”
Int. J. Solids Struct.
, Vol.
42
(
5–6
),
2005
, pp.
1381
1399
. https://doi.org/10.1016/j.ijsolstr.2004.07.024
33.
Gong
,
L.
,
Kyriakides
,
S.
, and
Triantafyllidis
,
N.
, “
On the Stability of Kelvin Cell Foams Under Compressive Loads
,”
J. Mech. Phys. Solids
, Vol.
53
(
4
),
2005
, pp.
771
794
. https://doi.org/10.1016/j.jmps.2004.10.007
34.
Warren
,
W. E.
and
Kraynik
,
A. M.
, “
Foam Mechanics: The Linear Elastic Response of Two-Dimensional Spatially Periodic Cellular Materials
,”
Mech. Mater.
, Vol.
6
(
1
),
1987
, pp.
27
37
. https://doi.org/10.1016/0167-6636(87)90020-2
35.
Zhu
,
H. X.
,
Knott
,
J. F.
, and
Mills
,
N. J.
, “
Analysis of the Elastic Properties of Open-Cell Foams With Tetrakaidecahedral Cells
,”
J. Mech. Phys. Solids
, Vol.
45
(
3
),
1997
, pp.
319
343
. https://doi.org/10.1016/S0022-5096(96)00090-7">10.1016/S0022-5096(96)00090-7
36.
Deshpande
,
V. S.
and
Fleck
,
N. A.
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
, Vol.
48
(
6–7
),
2000
, pp.
1253
1283
. https://doi.org/10.1016/S0022-5096(99)00082-4
37.
Jang
,
W. -Y.
and
Kyriakides
,
S.
, “
On the Crushing of Aluminum Open-Cell Foams: Part I. Experiments
,”
Int. J. Solids Struct.
, Vol.
46
(
3–4
),
2009
, pp.
617
634
. https://doi.org/10.1016/j.ijsolstr.2008.09.008
38.
Nieh
,
T. G.
,
Higashi
,
K.
, and
Wadsworth
,
J.
, “
Effect of Cell Morphology on the Compressive Properties of Open-Cell Aluminum Foams
,”
Mater. Sci. Eng.: A
, Vol.
283
(
1–2
),
2000
, pp.
105
110
. https://doi.org/10.1016/S0921-5093(00)00623-7
39.
Schmidt
,
I.
, “
Deformation Induced Elasto-Plastic Anisotropy in Metal Foams—Modelling and Simulation
,”
Int. J. Solids Struct.
, Vol.
41
(
24–25
),
2004
, pp.
6759
6782
. https://doi.org/10.1016/j.ijsolstr.2004.05.021
40.
Redenbach
,
C.
,
Shklyar
,
I.
, and
Andrä
,
H.
, “
Laguerre Tessellations for Elastic Stiffness Simulations of Closed Foams With Strongly Varying Cell Sizes
,”
Int. J. Eng. Sci.
, Vol.
50
(
1
),
2012
, pp.
70
78
. https://doi.org/10.1016/j.ijengsci.2011.09.002
41.
Řehořek
,
L.
,
Dlouhý
,
I.
, and
Zdeněk
,
C.
, “
Tensile Behaviour of Open Cell Ceramic Foams
,”
Ceram. Silikaty
, Vol.
53
(
4
),
2009
, pp.
237
241
.
42.
Lautensack
,
C.
, “
Fitting Three-Dimensional Laguerre Tessellations to Foam Structures
,”
J. Appl. Stat.
, Vol.
35
,
2008
, pp.
985
995
. https://doi.org/10.1080/02664760802188112
43.
Lautensack
,
C.
,
Giertzsch
,
M.
,
Godehardt
,
M.
, and
Schladitz
,
K.
, “
Modelling a Ceramic Foam Using Locally Adaptable Morphology
,”
J. Microsc.
, Vol.
230
(
3
),
2008
, pp.
396
404
. https://doi.org/10.1111/j.1365-2818.2008.01998.x
44.
Redenbach
,
C.
, “
Microstructure Models for Cellular Materials
,”
Comput. Mater. Sci.
, Vol.
44
(
4
),
2009
, pp.
1397
1407
. https://doi.org/10.1016/j.commatsci.2008.09.018
45.
Sieber
,
T.
,
Mühlich
,
U.
,
Liedke
,
T.
,
Ballaschk
,
U.
,
Berek
,
H.
,
Aneziris
,
C. G.
,
Ehinger
,
D.
,
Wolf
,
S.
, and
Krüger
,
L.
, “
Deformation and Failure of Open-Cell Foams Made of TRIP-Steel-ZrO2-Composite Materials: Experimental Observations Versus Numerical Simulations
,”
Steel Res. Int.
, Vol.
82
(
9
),
2011
, pp.
1004
1016
. https://doi.org/10.1002/srin.201100089
46.
Mabrouki
,
T.
,
Girardin
,
F.
,
Asad
,
M.
, and
Rigal
,
J.-F.
, “
Numerical and Experimental Study of Dry Cutting for an Aeronautic Aluminium Alloy (A2024-T351)
,”
Int. J. Mach. Tools Manuf.
, Vol.
48
,
2008
, pp.
1187
1197
. https://doi.org/10.1016/j.ijmachtools.2008.03.013
47.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cement Concrete Res.
, Vol.
6
,
1976
, pp.
773
782
. https://doi.org/10.1016/0008-8846(76)90007-7
This content is only available via PDF.
You do not currently have access to this content.