Abstract

In this paper, the results of a recent study aimed at understanding the bending fatigue response of two carbon steels is presented and discussed. The two carbon steels chosen are the ones preferred and used for a spectrum of industrial applications. Bend test specimens of the two carbon steels were prepared and conformed to specifications used in several earlier studies. The machined test specimens were deformed in bending fatigue over a range of maximum load, at a positive load ratio of 0.1, and the number of cycles to failure was recorded. The specific influence of chemical composition on bending fatigue life of the carbon steels is presented. The fracture surfaces of the deformed and failed specimens were examined in a scanning electron microscope to establish the macroscopic mode of fracture and to concurrently characterize the intrinsic features and establish the microscopic mechanisms governing fracture. The influence of nature of loading and maximum load on bending fatigue life is discussed in light of chemical composition and intrinsic microstructural features of the chosen carbon steel.

References

1.
Banerjee
B. R.
, “
Fracture Micromechanics in High-Strenght Steels
,”
Structure and Properties of Ultrahigh Strength Steels, STP 370
,
ASTM
,
Philadelphia, PA
,
1965
, pp.
94
121
.
2.
Baker
,
A. J.
,
Laura
E. J.
, and
Wei
,
R. P.
, “
Relationships Between Microstructure and Toughness in Quenched and Tempered Ultrahlgh-Strength Steels
,”
Structure and Properties of Ultrahigh Strength Steels, STP 370
,
ASTM
,
Philadelphia, PA
,
1965
, pp.
3
30
.
3.
Thomas
,
G.
,
Schmatz
D.
, and
Gerberich
W. W.
, “
Structure and Strength of Some Ausformed Steels
,”
High Strength Materials
,
Zackay
V. F.
, ed.,
John Wiley and Sons
,
New York
,
1965
, pp.
251
326
.
4.
Zackay
,
V. F.
,
Parker
,
E. R.
,
Goolsby
R. D.
, and
Wood
,
W. R.
, “
Untempered Ultra-high Strength Steels of High Fracture Toughness
,”
Nat. Phys. Sci.
, Vol.
236
, No.
68
,
1972
, pp.
108
115
. https://doi.org/10.1038/physci236108b0
5.
Murakami
,
Y.
,
Kodamab
,
S.
, and
Konumac
,
S.
, “
Quantitative Evaluation of Effects of Non-Metallic Inclusions on Fatigue Strength of High Strength Steels. I: Basic Fatigue Mechanism and Evaluation of Correlation Between the Fatigue Fracture Stress and the Size and Location of Non-Metallic Inclusions
,”
Int. J. Fatigue
, Vol.
11
,
1989
, pp.
291
298
. https://doi.org/10.1016/0142-1123(89)90054-6
6.
Zhang
,
J. M.
,
Li
,
S. X.
,
Yang
,
Z. G.
,
Hui
,
W. J.
, and
Weng
,
Y. Q.
, “
Influence of Inclusion Size on Fatigue Behavior of High Strength Steels in the Gigacycle Fatigue Regime
,”
Int. J. Fatigue
, Vol.
29
,
2007
, pp.
765
771
. https://doi.org/10.1016/j.ijfatigue.2006.06.004
7.
Evans
,
P. R. V.
,
Owen
,
N. B.
,
Hopkins
B. E.
, “
The Effect of Purity on Fatigue Crack Growth in a High-Strength Steel
,”
Eng. Fract. Mech.
, Vol.
3
,
1971
, pp.
463
468
. https://doi.org/10.1016/0013-7944(71)90059-2
8.
Murakami
,
Y.
and
Endo
M.
, “
A Geometrical Parameter for the Quantitative Estimation of the Effects of Small Defects on Fatigue Strength of Metals
,”
Trans. Jpn. Soc. Mech. Eng.
, Vol.
49
, No.
438
,
1983
, pp.
127
136
. https://doi.org/10.1299/kikaia.49.127
9.
Murakami
Y.
and
Endo
M.
, “
Effects of Defects, Inclusions and in Homogeneities on Fatigue Strength
,”
Int. J. Fatigue
, Vol.
16
,
1994
, pp.
163
182
. https://doi.org/10.1016/0142-1123(94)90001-9
10.
Murakami
,
Y.
, “
Effects of Nonmetallic Inclusions on Fatigue Strength
,”
Metal Fatigue. Effects of Small Defects and Non-Metallic Inclusions
,
Elsevier Publishers
,
New York
,
2002
, pp.
75
120
.
11.
Hebsur
,
M. G.
,
Abraham
K. P.
, and
Prasad
Y. V. R. K.
, “
Effect of Electroslag Refining on the Fracture Toughness and Fatigue Crack Propagation Rates in Heat Treated AISI 4340 Steel
,”
Eng. Fract. Mech.
, Vol.
13
,
1980
, pp.
851
864
. https://doi.org/10.1016/0013-7944(80)90016-8
12.
Murakami
,
Y.
and
Endo
,
T.
, “
The Effects of Small Defects on the Fatigue Strength of Hard Steels
,”
Materials, Experimentation and Design in Fatigue, Proc. Fatigue 1981
,
Sherrat
F.
and
Sturgeon
J. B.
, Eds,
Westbury House
,
New York
, pp.
431
440
.
13.
Murakami
,
Y.
,
Kodama
S.
, and
Konuma
,
S.
, “
Quantitative Evaluation of Effects of Nonmetallic Inclusions on Fatigue Strength of High Strength Steel
,”
Trans. Jpn. Soc. Mech. Eng.
, Vol.
54
, No.
500
,
1988
, pp.
688
696
. https://doi.org/10.1299/kikaia.54.688
14.
Thomas
,
G.
, “
Electron Microscopy Investigations of Ferrous Martensites
,”
Metall. Mater. Trans.
, Vol.
2
,
1971
, pp.
2373
2385
.
15.
Lowe
,
J. R.
, Jr.
, “
Effects of Microstructure on Fracture Toughness of High Strength Alloys
,”
Eng. Fract. Mech.
, Vol.
1
,
1969
, pp.
47
48
. https://doi.org/10.1016/0013-7944(68)90015-5
16.
Ritchie
,
R. O.
,
Francis
,
B.
, and
Server
,
B.
, “
Evaluation of Toughness in AISI 4340 Alloy Steel Austenitized at Low and High Temperatures
,”
Metall. Mater. Trans.
, Vol.
7A
,
1976
, pp.
831
841
.
17.
Mashiri
,
F. R.
and
Zhao
,
X. L.
, “
Thin Circular Hollow Section-to-Plate T-Joints; Stress Concentration Factors and Fatigue Failure Under In-Plane Bending
,”
Thin Walled Struct.
, Vol.
44
,
2006
, pp.
159
169
. https://doi.org/10.1016/j.tws.2006.02.003
18.
Mashiri
,
F. R.
,
Zhao
,
X. L.
, and
Grundt
,
P.
, “
Fatigue Tests and Design of Thin Cold-Formed Square Hollow Section-to-Plate T Connections Under In-Plane Bending
,”
J. Struct. Eng.
, Vol.
128
, No.
1
,
2002
, pp.
22
31
. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(22)
19.
Mashiri
,
F. R.
, and
Zhao
,
X. L.
, “
Fatigue Tests and Design of Thin CHS-Plate T-Joints Under Cyclic In-Plane Bending
,”
Thin Walled Struct.
, Vol.
45
, No.
4
,
2007
, pp.
463
472
. https://doi.org/10.1016/j.tws.2007.03.002
20.
Yang
,
J.
,
Wang
,
T. S.
,
Zhang
,
B.
, and
Zhang
,
F. C.
, “
High Cycle Bending Fatigue Behavior of Nanostructured Bianitic Steel
,”
Scr. Mater.
, Vol.
66
,
2012
, pp.
363
366
. https://doi.org/10.1016/j.scriptamat.2011.11.033
21.
Jiao
,
H.
,
Mashiri
,
F.
, and
Zhao
X.-L.
, “
Fatigue Behavior of Very High Strength (VHS) Circular Steel Tube to Plate T-Joints Under In-Plane Bending
,”
Thin Walled Struct.
, Vol.
68
,
2013
, pp.
106
112
. https://doi.org/10.1016/j.tws.2013.03.006
22.
ASTM D790-91
:
Standard Test Method for Flexural Properties of Materials and Electrical Insulating Materials
,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
1991
.
23.
Cox
,
T. B.
and
Low
,
J. R.
, “
An Investigation of the Plastic Fracture of AISI 4340 and 18 Nickel-200 Grade Maraging Steels
,”
Metall. Trans.
, Vol.
5
,
1974
, pp.
1457
1465
. https://doi.org/10.1007/BF02646633
24.
Goto
,
D. M.
,
Koss
,
D. A.
, and
Jablokov
,
V.
, “
The Influence of Tensile Stress States on the Failure of HY-100 Steel
,”
Metall. Mater. Trans.
, Vol.
30A
,
1999
, pp.
2835
2840
. https://doi.org/10.1007/s11661-999-0121-x
25.
Jabkolov
,
V.
,
Goto
,
D. M.
, and
Koss
,
D. A.
, “
Damage Accumulation and Failure of HY-100 Steel
,”
Metall. Mater. Trans.
, Vol.
32A
,
2001
, pp.
2985
2994
.
26.
Pompetzki
,
M. A.
,
Topper
,
T. H.
, and
DuQuesnay
,
D. L.
, “
The Effect of Compressive Underloads and Tensile Overloads on Fatigue Damage Accumulation in SAE 1045 Steel
,”
Int. J. Fatigue
, Vol.
12
, No.
3
,
1990
, pp.
207
213
. https://doi.org/10.1016/0142-1123(90)90097-X
This content is only available via PDF.
You do not currently have access to this content.