Abstract

A study of corrosion damage and material characterization of two historic military tanks, the Sherman and Centaur is reported. Experiments were conducted to analyse surface corrosion and corrosion propagation from surface to sub-surface. Significant surface corrosion was found, and this phenomenon was further facilitated by delamination failure mechanisms. Corrosion depth for the Sherman was approximately 110 μm, where sulphide inclusions were detected in the sub-surface analysis. The Centaur's analysis showed corrosion pits at 100 μm depth. These pits possess random geometrical configurations with evidence of sulphur, sodium, and calcium.

References

1.
Vinod
,
A. S.
, “
Corrosion in the Military
,”
Corrosion: Environments and Industries: ASM Int.
, Vol.
13C
,
2006
, pp.
126
135
.
2.
Morefield
,
S.
,
Drozdz
,
S.
,
Hock
,
V.
, and
Abbott
,
W.
, “
Measuring Rates and Impact of Corrosion on DOD Equipment
,”
Corros. Mil. II
, Vol.
38
,
2008
, pp.
163
181
. https://doi.org/10.4028/www.scientific.net/AMR.38.163
3.
Chamberlain
,
P.
and
Ellis
,
C.
,
British and American Tanks of World War II: The Complete Illustrated History of British, American, and Commonwealth Tanks, 1939–1945
,
Cassell & Co.
,
London/New York
,
2000
.
4.
Jackson
,
R.
,
Tanks and Armoured Fighting Vehicles
,
Parragon
,
Bath
,
2007
.
5.
Saeed
,
A.
,
Khan
,
Z.
,
Garland
,
N.
, and
Smith
,
R.
, “
Material Characterisation to Understand Various Modes of Corrosion Failures in Large Military Vehicles of Historical Importance
,”
Fifth International Conference on Computational Methods and Experiments in Materials Characterisation
,
Kos
,
Greece
, June
2011
, pp.
13
15
.
6.
Saeed
,
A.
,
Khan
,
Z.
,
Clark
,
M.
,
Nel
,
N.
, and
Smith
,
R.
, “
Non-Destructive Material Characterisation and Material Loss Evaluation in Large Historic Military Vehicles
,”
Insight: Non-Destruct. Test. Cond. Monitor.
, Vol.
53
,
2011
, pp.
382
386
. https://doi.org/10.1784/insi.2011.53.7.382
7.
Engel
,
L.
and
Klingele
,
H.
,
An Atlas of Metal Damage Surface Examination by Scanning Electron Microscope
,
Wolfe Science/Hanser
,
Munich/London
,
1981
.
8.
Schell
,
N.
,
Martins
,
R. V.
,
Beckmann
,
F.
,
Ruhnau
,
H. U.
,
Kiehn
,
R.
, and
Schreyer
,
A.
, “
The High Energy Materials Science Beamline at PETRA III
,”
Stress Eval. Mater. Using Neutrons Sync. Radiat.
, Vol.
571–572
,
2008
, pp.
261
266
. https://doi.org/10.4028/www.scientific.net/MSF.571-572.261
9.
Blücher
,
D. B.
,
Svensson
,
J. E.
, and
Johansson
,
L. G.
, “
The Influence of CO2, AlCl3·6H2O, MgCl2·6H2O, Na2SO4 and NaCl on the Atmospheric Corrosion of Aluminum
,”
Corros. Sci.
, Vol.
48
,
2006
, pp.
1848
1866
. https://doi.org/10.1016/j.corsci.2005.05.027
10.
Finlayson-Pitts
,
B. J.
and
Pitts
,
J. N.
,
Atmospheric Chemistry: Fundamentals and Experimental Techniques
,
Wiley
,
New York
,
1986
.
11.
Chao
,
J.
,
Capdevila-Montes
,
C.
, and
González-Carrasco
,
J. L.
, “
On the Delamination of FeCrAl ODS Alloys
,”
Mater. Sci. Eng.: A
, Vol.
515
,
2009
, pp.
190
198
. https://doi.org/10.1016/j.msea.2009.03.017
12.
Hylander
,
L. D.
, “
Global Mercury Pollution and Its Expected Decrease after a Mercury Trade Ban
,”
Water, Air, Soil Pollut.
, Vol.
125
,
2001
, pp.
331
344
. https://doi.org/10.1023/A:1005231017807
13.
Lyon
,
S. B.
, “
Corrosion of Carbon and Low Alloy Steels
,”
Shreir's Corrosion
,
Richardson
T. J. A.
, Ed.,
Elsevier
,
New York
,
2010
, pp.
1693
1736
.
14.
Williams
,
D. E.
,
Kilburn
,
M. R.
,
Cliff
,
J.
, and
Waterhouse
,
G. I. N.
, “
Composition Changes around Sulphide Inclusions in Stainless Steels, and Implications for the Initiation of Pitting Corrosion
,”
Corros. Sci.
, Vol.
52
,
2010
, pp.
3702
3716
. https://doi.org/10.1016/j.corsci.2010.07.021
15.
Kiessling
,
R.
and
Lange
,
N.
,
Non-Metallic Inclusions in Steel
, 2nd ed.,
Metals Society
,
London
,
1978
.
16.
Pereira
,
A. A.
,
Boehs
,
L.
, and
Guesser
,
W. L.
, “
The Influence of Sulfur on the Machinability of Gray Cast Iron FC25
,”
J. Mater. Proc. Technol.
, Vol.
179
,
2006
, pp.
165
171
. https://doi.org/10.1016/j.jmatprotec.2006.03.100
17.
Wranglen
,
G.
, “
Pitting and Sulphide Inclusions in Steel
,”
Corros. Sci.
, Vol.
14
,
1974
, pp.
331
349
. https://doi.org/10.1016/S0010-938X(74)80047-8
18.
Bento
,
J. M. V.
,
Pena
,
A.
,
Lino
,
C. M.
, and
Pereira
,
J. A.
, “
Determination of Ochratoxin A Content in Wheat Bread Samples Collected from the Algarve and Bragança Regions, Portugal: Winter 2007
,”
Microchem. J.
, Vol.
91
,
2009
, pp.
165
169
. https://doi.org/10.1016/j.microc.2008.10.004
19.
Jeon
,
S.-H.
,
Kim
,
S.-T.
,
Lee
,
I.-S.
, and
Park
,
Y.-S.
, “
Effects of Sulfur Addition on Pitting Corrosion and Machinability Behavior of Super Duplex Stainless Steel Containing Rare Earth Metals: Part 2
,”
Corros. Sci.
, Vol.
52
,
2010
, pp.
3537
3547
. https://doi.org/10.1016/j.corsci.2010.07.002
20.
ISO 9223
, “
Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation
,”
International Organization for Standardization
,
Geneva
, Switzerland,
2012
, 15 pp.
21.
Cai
,
J. P.
and
Lyon
,
S. B.
, “
A Mechanistic Study of Initial Atmospheric Corrosion Kinetics Using Electrical Resistance Sensors
,”
Corros. Sci.
, Vol.
47
,
2005
, pp.
2956
2973
. https://doi.org/10.1016/j.corsci.2005.04.011
22.
Schweitzer
,
P. A.
,
Fundamentals of Corrosion: Mechanisms, Causes, and Preventative Methods
,
CRC
,
Boca Raton, FL
,
2010
.
23.
Trethewey
,
K. R.
and
Chamberlain
,
J.
,
Corrosion: For Students of Science and Engineering
,
Longman Scientific & Technical
,
Harlow, U.K.
,
1988
.
24.
Kart
,
H. H.
,
Uludogan
,
M.
, and
Cagin
,
T.
, “
DFT Studies of Sulfur Induced Stress Corrosion Cracking in Nickel
,”
Comput. Mater. Sci.
, Vol.
44
,
2008
, pp.
1236
1242
. https://doi.org/10.1016/j.commatsci.2008.08.007
25.
Williams
,
D. E.
,
Mohiuddin
,
T. F.
, and
Zhu
,
Y. Y.
, “
Elucidation of a Trigger Mechanism for Pitting Corrosion of Stainless Steels Using Submicron Resolution Scanning Electrochemical and Photoelectrochemical Microscopy
,”
J. Electrochem. Soc.
, Vol.
145
,
1998
, pp.
2664
2672
. https://doi.org/10.1149/1.1838697
26.
Eklund
,
G. S.
, “
Initiation of Pitting at Sulphide Inclusions in Stainless Steel
,”
J. Electrochem. Soc.
, Vol.
121
,
1974
, pp.
467
473
. https://doi.org/10.1149/1.2401840
27.
Greenwood
,
N. N.
and
Earnshaw
,
A.
,
Chemistry of the Elements
, 2nd ed.,
Butterworth-Heinemann
,
Oxford
,
1997
.
28.
Castaño
,
J. G.
,
Botero
,
C. A.
,
Restrepo
,
A. H.
,
Agudelo
,
E. A.
,
Correa
,
E.
, and
Echeverría
,
F.
, “
Atmospheric Corrosion of Carbon Steel in Colombia
,”
Corros. Sci.
, Vol.
52
,
2010
, pp.
216
223
. https://doi.org/10.1016/j.corsci.2009.09.006
29.
Kamimura
,
T.
,
Hara
,
S.
,
Miyuki
,
H.
,
Yamashita
,
M.
, and
Uchida
,
H.
, “
Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments
,”
Corros. Sci.
, Vol.
48
,
2006
, pp.
2799
2812
. https://doi.org/10.1016/j.corsci.2005.10.004
30.
Dillmann
,
P.
,
Mazaudier
,
F.
, and
Hœrlé
,
S.
, “
Advances in Understanding Atmospheric Corrosion of Iron: I. Rust Characterisation of Ancient Ferrous Artefacts Exposed to Indoor Atmospheric Corrosion
,”
Corros. Sci.
, Vol.
46
,
2004
, pp.
1401
1429
. https://doi.org/10.1016/j.corsci.2003.09.027
31.
Ma
,
Y.
,
Li
,
Y.
, and
Wang
,
F.
, “
The Effect of β-FeOOH on the Corrosion Behavior of Low Carbon Steel Exposed in Tropic Marine Environment
,”
Mater. Chem. Phys.
, Vol.
112
,
2008
, pp.
844
852
. https://doi.org/10.1016/j.matchemphys.2008.06.066
32.
Williams
,
D. E.
,
Westcott
,
C.
, and
Fleischmann
,
M.
,
Stochastic Models of Pitting Corrosion of Stainless Steels: Part 1; Modelling of the Initiation and Growth of Pits at Constant Potential
,
UKAEA Atomic Energy Establishment Materials Development Division
,
Harwell
,
1984
.
33.
Williams
,
D. E.
,
Westcott
,
C.
, and
Fleischmann
,
M.
,
Stochastic Models of Pitting Corrosion of Stainless Steels: Part 2; Measurement and Interpretation of Data at Constant Potential
,
UKAEA Atomic Energy Establishment Materials Development Division
,
Harwell
,
1984
.
34.
Williams
,
D. E.
,
Westcott
,
C.
, and
Fleischmann
,
M.
, “
Studies of the Initiation of Pitting Corrosion on Stainless Steels
,”
J. Electroanal. Chem. Interfacial Electrochem.
, Vol.
180
,
1984
, pp.
549
564
. https://doi.org/10.1016/0368-1874(84)83606-0
35.
Williams
,
J. A.
, “
Wear and Wear Particles—Some Fundamentals
,”
Tribol. Int.
, Vol.
38
,
2005
, pp.
863
870
. https://doi.org/10.1016/j.triboint.2005.03.007
36.
Alvarez
,
M. G.
and
Galvele
,
J. R.
, “
Pitting Corrosion
,”
Shreir's Corrosion
,
Richardson
T. J. A.
, Ed.,
Elsevier
,
New York
,
2010
, pp.
772
800
.
37.
Baboian
,
R.
,
Automotive Corrosion Tests and Standards
,
Society of Manufacturing Engineers
,
Dearborn, MI
,
1996
.
38.
Askey
,
A.
,
Lyon
,
S. B.
,
Thompson
,
G. E.
,
Johnson
,
J. B.
,
Wood
,
G. C.
,
Sage
,
P. W.
, and
Cooke
,
M. J.
, “
The Effect of Fly-Ash Particulates on the Atmospheric Corrosion of Zinc and Mild Steel
,”
Corros. Sci.
, Vol.
34
,
1993
, pp.
1055
1081
. https://doi.org/10.1016/0010-938X(93)90289-S
39.
Turnbull
,
A.
,
McCartney
,
L. N.
, and
Zhou
,
S.
, “
A Model to Predict the Evolution of Pitting Corrosion and the Pit-to-Crack Transition Incorporating Statistically Distributed Input Parameters
,”
Corros. Sci.
, Vol.
48
,
2006
, pp.
2084
2105
. https://doi.org/10.1016/j.corsci.2005.08.010
40.
Horner
,
D. A.
,
Connolly
,
B. J.
,
Zhou
,
S.
,
Crocker
,
L.
, and
Turnbull
,
A.
, “
Novel Images of the Evolution of Stress Corrosion Cracks from Corrosion Pits
,”
Corros. Sci.
, Vol.
53
,
2011
, pp.
3466
3485
. https://doi.org/10.1016/j.corsci.2011.05.050
41.
Weather Underground,
2011
, http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=IDORSETB5 (Last accessed 21 Nov
2011
).
42.
Metoffice,
2011
, “
Station Data
,” http://www.metoffice.gov.uk/climate/uk/stationdata/hurndata.txt (Last accessed 21 Nov
2011
).
43.
dorsetforyou.com,
2012
, “
Climate Data for Weymouth, England (1981–2010)
,” http://webapps-wpbc.dorsetforyou.com/apps/weather/annualreport.asp (Last accessed February 22,
2012
).
44.
Defra,
2011
, “
Acid Gas and Aerosol Network (AGANet)
,” http://uk-air.defra.gov.uk/networks/network-info?view=aganet (Last accessed 24 Nov
2011
).
45.
Stratmann
,
M.
,
Bohnenkamp
,
K.
, and
Engell
,
H. J.
, “
An Electrochemical Study of Phase-Transitions in Rust Layers
,”
Corros. Sci.
, Vol.
23
,
1983
, pp.
969
985
. https://doi.org/10.1016/0010-938X(83)90024-0
46.
Stratmann
,
M.
,
Bohnenkamp
,
K.
, and
Ramchandran
,
T.
, “
The Influence of Copper upon the Atmospheric Corrosion of Iron
,”
Corros. Sci.
, Vol.
27
,
1987
, pp.
905
926
. https://doi.org/10.1016/0010-938X(87)90058-8
47.
Alwash
,
S. H.
,
Ashworth
,
V.
,
Shirkhanzadeh
,
M.
, and
Thompson
,
G. E.
, “
An Investigation of the Reduction of Oxygen at a Rotating Disc Electrode With Heat Transfer Facilities
,”
Corros. Sci.
, Vol.
27
,
1987
, pp.
1301
1311
. https://doi.org/10.1016/0010-938X(87)90127-2
48.
El-Mahdy
,
G. A.
,
Nishikata
,
A.
, and
Tsuru
,
T.
, “
Electrochemical Corrosion Monitoring of Galvanized Steel under Cyclic Wet–Dry Conditions
,”
Corros. Sci.
, Vol.
42
,
2000
, pp.
183
194
. https://doi.org/10.1016/S0010-938X(99)00057-8
49.
Nishikata
,
A.
,
Yamashita
,
Y.
,
Katayama
,
H.
,
Tsuru
,
T.
,
Usami
,
a.
,
Tanabe
,
K.
, and
Mabuchi
,
H.
, “
An Electrochemical Impedance Study on Atmospheric Corrosion of Steels in a Cyclic Wet–Dry Condition
,”
Corros. Sci.
, Vol.
37
,
1995
, pp.
2059
2069
. https://doi.org/10.1016/0010-938X(95)00104-R
50.
Yadav
,
A. P.
,
Nishikata
,
A.
, and
Tsuru
,
T.
, “
Electrochemical Impedance Study on Galvanized Steel Corrosion under Cyclic Wet–Dry Conditions—Influence of Time of Wetness
,”
Corros. Sci.
, Vol.
46
,
2004
, pp.
169
181
. https://doi.org/10.1016/S0010-938X(03)00130-6
51.
Schwitter
,
H.
and
Bohni
,
H.
, “
Influence of Accelerated Weathering on the Corrosion of Low-Alloy Steels
,”
J. Electrochem. Soc.
, Vol.
127
,
1980
, pp.
15
20
. https://doi.org/10.1149/1.2129607
52.
Corvo
,
F.
,
Mendoza
,
A. R.
,
Autie
,
M.
, and
Betancourt
,
N.
, “
Role of Water Adsorption and Salt Content in Atmospheric Corrosion Products of Steel
,”
Corros. Sci.
, Vol.
39
,
1997
, pp.
815
820
. https://doi.org/10.1016/S0010-938X(96)00162-X
53.
Neufeld
,
A. K.
,
Cole
,
I. S.
,
Bond
,
A. M.
, and
Furman
,
S. A.
, “
The Initiation Mechanism of Corrosion of Zinc by Sodium Chloride Particle Deposition
,”
Corros. Sci.
, Vol.
44
,
2002
, pp.
555
572
. https://doi.org/10.1016/S0010-938X(01)00056-7
This content is only available via PDF.
You do not currently have access to this content.