Abstract
A study of corrosion damage and material characterization of two historic military tanks, the Sherman and Centaur is reported. Experiments were conducted to analyse surface corrosion and corrosion propagation from surface to sub-surface. Significant surface corrosion was found, and this phenomenon was further facilitated by delamination failure mechanisms. Corrosion depth for the Sherman was approximately 110 μm, where sulphide inclusions were detected in the sub-surface analysis. The Centaur's analysis showed corrosion pits at 100 μm depth. These pits possess random geometrical configurations with evidence of sulphur, sodium, and calcium.
Issue Section:
Research Papers
References
1.
Vinod
, A. S.
, “Corrosion in the Military
,” Corrosion: Environments and Industries: ASM Int.
, Vol. 13C
, 2006
, pp. 126
–135
.2.
Morefield
, S.
, Drozdz
, S.
, Hock
, V.
, and Abbott
, W.
, “Measuring Rates and Impact of Corrosion on DOD Equipment
,” Corros. Mil. II
, Vol. 38
, 2008
, pp. 163
–181
. https://doi.org/10.4028/www.scientific.net/AMR.38.1633.
Chamberlain
, P.
and Ellis
, C.
, British and American Tanks of World War II: The Complete Illustrated History of British, American, and Commonwealth Tanks, 1939–1945
, Cassell & Co.
, London/New York
, 2000
.4.
Jackson
, R.
, Tanks and Armoured Fighting Vehicles
, Parragon
, Bath
, 2007
.5.
Saeed
, A.
, Khan
, Z.
, Garland
, N.
, and Smith
, R.
, “Material Characterisation to Understand Various Modes of Corrosion Failures in Large Military Vehicles of Historical Importance
,” Fifth International Conference on Computational Methods and Experiments in Materials Characterisation
, Kos
, Greece
, June 2011
, pp. 13
–15
.6.
Saeed
, A.
, Khan
, Z.
, Clark
, M.
, Nel
, N.
, and Smith
, R.
, “Non-Destructive Material Characterisation and Material Loss Evaluation in Large Historic Military Vehicles
,” Insight: Non-Destruct. Test. Cond. Monitor.
, Vol. 53
, 2011
, pp. 382
–386
. https://doi.org/10.1784/insi.2011.53.7.3827.
Engel
, L.
and Klingele
, H.
, An Atlas of Metal Damage Surface Examination by Scanning Electron Microscope
, Wolfe Science/Hanser
, Munich/London
, 1981
.8.
Schell
, N.
, Martins
, R. V.
, Beckmann
, F.
, Ruhnau
, H. U.
, Kiehn
, R.
, and Schreyer
, A.
, “The High Energy Materials Science Beamline at PETRA III
,” Stress Eval. Mater. Using Neutrons Sync. Radiat.
, Vol. 571–572
, 2008
, pp. 261
–266
. https://doi.org/10.4028/www.scientific.net/MSF.571-572.2619.
Blücher
, D. B.
, Svensson
, J. E.
, and Johansson
, L. G.
, “The Influence of CO2, AlCl3·6H2O, MgCl2·6H2O, Na2SO4 and NaCl on the Atmospheric Corrosion of Aluminum
,” Corros. Sci.
, Vol. 48
, 2006
, pp. 1848
–1866
. https://doi.org/10.1016/j.corsci.2005.05.02710.
Finlayson-Pitts
, B. J.
and Pitts
, J. N.
, Atmospheric Chemistry: Fundamentals and Experimental Techniques
, Wiley
, New York
, 1986
.11.
Chao
, J.
, Capdevila-Montes
, C.
, and González-Carrasco
, J. L.
, “On the Delamination of FeCrAl ODS Alloys
,” Mater. Sci. Eng.: A
, Vol. 515
, 2009
, pp. 190
–198
. https://doi.org/10.1016/j.msea.2009.03.01712.
Hylander
, L. D.
, “Global Mercury Pollution and Its Expected Decrease after a Mercury Trade Ban
,” Water, Air, Soil Pollut.
, Vol. 125
, 2001
, pp. 331
–344
. https://doi.org/10.1023/A:100523101780713.
Lyon
, S. B.
, “Corrosion of Carbon and Low Alloy Steels
,” Shreir's Corrosion
, Richardson
T. J. A.
, Ed., Elsevier
, New York
, 2010
, pp. 1693
–1736
.14.
Williams
, D. E.
, Kilburn
, M. R.
, Cliff
, J.
, and Waterhouse
, G. I. N.
, “Composition Changes around Sulphide Inclusions in Stainless Steels, and Implications for the Initiation of Pitting Corrosion
,” Corros. Sci.
, Vol. 52
, 2010
, pp. 3702
–3716
. https://doi.org/10.1016/j.corsci.2010.07.02115.
Kiessling
, R.
and Lange
, N.
, Non-Metallic Inclusions in Steel
, 2nd ed., Metals Society
, London
, 1978
.16.
Pereira
, A. A.
, Boehs
, L.
, and Guesser
, W. L.
, “The Influence of Sulfur on the Machinability of Gray Cast Iron FC25
,” J. Mater. Proc. Technol.
, Vol. 179
, 2006
, pp. 165
–171
. https://doi.org/10.1016/j.jmatprotec.2006.03.10017.
Wranglen
, G.
, “Pitting and Sulphide Inclusions in Steel
,” Corros. Sci.
, Vol. 14
, 1974
, pp. 331
–349
. https://doi.org/10.1016/S0010-938X(74)80047-818.
Bento
, J. M. V.
, Pena
, A.
, Lino
, C. M.
, and Pereira
, J. A.
, “Determination of Ochratoxin A Content in Wheat Bread Samples Collected from the Algarve and Bragança Regions, Portugal: Winter 2007
,” Microchem. J.
, Vol. 91
, 2009
, pp. 165
–169
. https://doi.org/10.1016/j.microc.2008.10.00419.
Jeon
, S.-H.
, Kim
, S.-T.
, Lee
, I.-S.
, and Park
, Y.-S.
, “Effects of Sulfur Addition on Pitting Corrosion and Machinability Behavior of Super Duplex Stainless Steel Containing Rare Earth Metals: Part 2
,” Corros. Sci.
, Vol. 52
, 2010
, pp. 3537
–3547
. https://doi.org/10.1016/j.corsci.2010.07.00220.
ISO 9223
, “Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation
,” International Organization for Standardization
, Geneva
, Switzerland, 2012
, 15 pp.21.
Cai
, J. P.
and Lyon
, S. B.
, “A Mechanistic Study of Initial Atmospheric Corrosion Kinetics Using Electrical Resistance Sensors
,” Corros. Sci.
, Vol. 47
, 2005
, pp. 2956
–2973
. https://doi.org/10.1016/j.corsci.2005.04.01122.
Schweitzer
, P. A.
, Fundamentals of Corrosion: Mechanisms, Causes, and Preventative Methods
, CRC
, Boca Raton, FL
, 2010
.23.
Trethewey
, K. R.
and Chamberlain
, J.
, Corrosion: For Students of Science and Engineering
, Longman Scientific & Technical
, Harlow, U.K.
, 1988
.24.
Kart
, H. H.
, Uludogan
, M.
, and Cagin
, T.
, “DFT Studies of Sulfur Induced Stress Corrosion Cracking in Nickel
,” Comput. Mater. Sci.
, Vol. 44
, 2008
, pp. 1236
–1242
. https://doi.org/10.1016/j.commatsci.2008.08.00725.
Williams
, D. E.
, Mohiuddin
, T. F.
, and Zhu
, Y. Y.
, “Elucidation of a Trigger Mechanism for Pitting Corrosion of Stainless Steels Using Submicron Resolution Scanning Electrochemical and Photoelectrochemical Microscopy
,” J. Electrochem. Soc.
, Vol. 145
, 1998
, pp. 2664
–2672
. https://doi.org/10.1149/1.183869726.
Eklund
, G. S.
, “Initiation of Pitting at Sulphide Inclusions in Stainless Steel
,” J. Electrochem. Soc.
, Vol. 121
, 1974
, pp. 467
–473
. https://doi.org/10.1149/1.240184027.
Greenwood
, N. N.
and Earnshaw
, A.
, Chemistry of the Elements
, 2nd ed., Butterworth-Heinemann
, Oxford
, 1997
.28.
Castaño
, J. G.
, Botero
, C. A.
, Restrepo
, A. H.
, Agudelo
, E. A.
, Correa
, E.
, and Echeverría
, F.
, “Atmospheric Corrosion of Carbon Steel in Colombia
,” Corros. Sci.
, Vol. 52
, 2010
, pp. 216
–223
. https://doi.org/10.1016/j.corsci.2009.09.00629.
Kamimura
, T.
, Hara
, S.
, Miyuki
, H.
, Yamashita
, M.
, and Uchida
, H.
, “Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments
,” Corros. Sci.
, Vol. 48
, 2006
, pp. 2799
–2812
. https://doi.org/10.1016/j.corsci.2005.10.00430.
Dillmann
, P.
, Mazaudier
, F.
, and Hœrlé
, S.
, “Advances in Understanding Atmospheric Corrosion of Iron: I. Rust Characterisation of Ancient Ferrous Artefacts Exposed to Indoor Atmospheric Corrosion
,” Corros. Sci.
, Vol. 46
, 2004
, pp. 1401
–1429
. https://doi.org/10.1016/j.corsci.2003.09.02731.
Ma
, Y.
, Li
, Y.
, and Wang
, F.
, “The Effect of β-FeOOH on the Corrosion Behavior of Low Carbon Steel Exposed in Tropic Marine Environment
,” Mater. Chem. Phys.
, Vol. 112
, 2008
, pp. 844
–852
. https://doi.org/10.1016/j.matchemphys.2008.06.06632.
Williams
, D. E.
, Westcott
, C.
, and Fleischmann
, M.
, Stochastic Models of Pitting Corrosion of Stainless Steels: Part 1; Modelling of the Initiation and Growth of Pits at Constant Potential
, UKAEA Atomic Energy Establishment Materials Development Division
, Harwell
, 1984
.33.
Williams
, D. E.
, Westcott
, C.
, and Fleischmann
, M.
, Stochastic Models of Pitting Corrosion of Stainless Steels: Part 2; Measurement and Interpretation of Data at Constant Potential
, UKAEA Atomic Energy Establishment Materials Development Division
, Harwell
, 1984
.34.
Williams
, D. E.
, Westcott
, C.
, and Fleischmann
, M.
, “Studies of the Initiation of Pitting Corrosion on Stainless Steels
,” J. Electroanal. Chem. Interfacial Electrochem.
, Vol. 180
, 1984
, pp. 549
–564
. https://doi.org/10.1016/0368-1874(84)83606-035.
Williams
, J. A.
, “Wear and Wear Particles—Some Fundamentals
,” Tribol. Int.
, Vol. 38
, 2005
, pp. 863
–870
. https://doi.org/10.1016/j.triboint.2005.03.00736.
Alvarez
, M. G.
and Galvele
, J. R.
, “Pitting Corrosion
,” Shreir's Corrosion
, Richardson
T. J. A.
, Ed., Elsevier
, New York
, 2010
, pp. 772
–800
.37.
Baboian
, R.
, Automotive Corrosion Tests and Standards
, Society of Manufacturing Engineers
, Dearborn, MI
, 1996
.38.
Askey
, A.
, Lyon
, S. B.
, Thompson
, G. E.
, Johnson
, J. B.
, Wood
, G. C.
, Sage
, P. W.
, and Cooke
, M. J.
, “The Effect of Fly-Ash Particulates on the Atmospheric Corrosion of Zinc and Mild Steel
,” Corros. Sci.
, Vol. 34
, 1993
, pp. 1055
–1081
. https://doi.org/10.1016/0010-938X(93)90289-S39.
Turnbull
, A.
, McCartney
, L. N.
, and Zhou
, S.
, “A Model to Predict the Evolution of Pitting Corrosion and the Pit-to-Crack Transition Incorporating Statistically Distributed Input Parameters
,” Corros. Sci.
, Vol. 48
, 2006
, pp. 2084
–2105
. https://doi.org/10.1016/j.corsci.2005.08.01040.
Horner
, D. A.
, Connolly
, B. J.
, Zhou
, S.
, Crocker
, L.
, and Turnbull
, A.
, “Novel Images of the Evolution of Stress Corrosion Cracks from Corrosion Pits
,” Corros. Sci.
, Vol. 53
, 2011
, pp. 3466
–3485
. https://doi.org/10.1016/j.corsci.2011.05.05041.
Weather Underground,
2011
, http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=IDORSETB5 (Last accessed 21 Nov 2011
).42.
Metoffice,
2011
, “Station Data
,” http://www.metoffice.gov.uk/climate/uk/stationdata/hurndata.txt (Last accessed 21 Nov 2011
).43.
dorsetforyou.com,
2012
, “Climate Data for Weymouth, England (1981–2010)
,” http://webapps-wpbc.dorsetforyou.com/apps/weather/annualreport.asp (Last accessed February 22, 2012
).44.
Defra,
2011
, “Acid Gas and Aerosol Network (AGANet)
,” http://uk-air.defra.gov.uk/networks/network-info?view=aganet (Last accessed 24 Nov 2011
).45.
Stratmann
, M.
, Bohnenkamp
, K.
, and Engell
, H. J.
, “An Electrochemical Study of Phase-Transitions in Rust Layers
,” Corros. Sci.
, Vol. 23
, 1983
, pp. 969
–985
. https://doi.org/10.1016/0010-938X(83)90024-046.
Stratmann
, M.
, Bohnenkamp
, K.
, and Ramchandran
, T.
, “The Influence of Copper upon the Atmospheric Corrosion of Iron
,” Corros. Sci.
, Vol. 27
, 1987
, pp. 905
–926
. https://doi.org/10.1016/0010-938X(87)90058-847.
Alwash
, S. H.
, Ashworth
, V.
, Shirkhanzadeh
, M.
, and Thompson
, G. E.
, “An Investigation of the Reduction of Oxygen at a Rotating Disc Electrode With Heat Transfer Facilities
,” Corros. Sci.
, Vol. 27
, 1987
, pp. 1301
–1311
. https://doi.org/10.1016/0010-938X(87)90127-248.
El-Mahdy
, G. A.
, Nishikata
, A.
, and Tsuru
, T.
, “Electrochemical Corrosion Monitoring of Galvanized Steel under Cyclic Wet–Dry Conditions
,” Corros. Sci.
, Vol. 42
, 2000
, pp. 183
–194
. https://doi.org/10.1016/S0010-938X(99)00057-849.
Nishikata
, A.
, Yamashita
, Y.
, Katayama
, H.
, Tsuru
, T.
, Usami
, a.
, Tanabe
, K.
, and Mabuchi
, H.
, “An Electrochemical Impedance Study on Atmospheric Corrosion of Steels in a Cyclic Wet–Dry Condition
,” Corros. Sci.
, Vol. 37
, 1995
, pp. 2059
–2069
. https://doi.org/10.1016/0010-938X(95)00104-R50.
Yadav
, A. P.
, Nishikata
, A.
, and Tsuru
, T.
, “Electrochemical Impedance Study on Galvanized Steel Corrosion under Cyclic Wet–Dry Conditions—Influence of Time of Wetness
,” Corros. Sci.
, Vol. 46
, 2004
, pp. 169
–181
. https://doi.org/10.1016/S0010-938X(03)00130-651.
Schwitter
, H.
and Bohni
, H.
, “Influence of Accelerated Weathering on the Corrosion of Low-Alloy Steels
,” J. Electrochem. Soc.
, Vol. 127
, 1980
, pp. 15
–20
. https://doi.org/10.1149/1.212960752.
Corvo
, F.
, Mendoza
, A. R.
, Autie
, M.
, and Betancourt
, N.
, “Role of Water Adsorption and Salt Content in Atmospheric Corrosion Products of Steel
,” Corros. Sci.
, Vol. 39
, 1997
, pp. 815
–820
. https://doi.org/10.1016/S0010-938X(96)00162-X53.
Neufeld
, A. K.
, Cole
, I. S.
, Bond
, A. M.
, and Furman
, S. A.
, “The Initiation Mechanism of Corrosion of Zinc by Sodium Chloride Particle Deposition
,” Corros. Sci.
, Vol. 44
, 2002
, pp. 555
–572
. https://doi.org/10.1016/S0010-938X(01)00056-7
This content is only available via PDF.
All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ASTM International.
You do not currently have access to this content.