Abstract

This article reviews the current state of the art in understanding twinning-induced plasticity (TWIP) steels with an emphasis on linking microstructure to mechanical behavior by means of microstructure-aware constitutive models. A materials selection exercise is conducted to substantiate that TWIP steels are more desirable than most other materials for use in structural and safety components of automobiles. Gaps in the knowledge of TWIP steels that are hindering their adoption for automotive applications are identified. This review concludes by suggesting fundamental research needs for promoting the design of TWIP steels with improved properties and performance for structural components in automotive applications.

References

1.
Bouaziz
,
O.
,
Allain
,
S.
,
Scott
,
C. P.
,
Cugy
,
P.
, and
Barbier
,
D.
, “
High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships
,”
Curr. Opin. Solid State Mater. Sci.
, Vol.
15
(
4
),
2011
, pp.
141
168
. https://doi.org/10.1016/j.cossms.2011.04.002
2.
Ashby
,
M. F.
,
Materials Selection in Mechanical Design
, 3rd ed.,
Elsevier
,
New York
,
2005
.
3.
CES EduPack
. (
2011
),
Granta Design Limited
,
Cambridge
,
UK
.
4.
Miller
,
W. S.
,
Zhuang
,
L.
,
Bottema
,
J.
,
Wittebrood
,
A. J.
,
De Smet
,
P.
,
Haszler
,
A.
, and
Vieregge
,
A.
, “
Recent Development in Aluminum Alloys for the Automotive Industry
,”
Mater. Sci. Eng.
, Vol.
A280
,
2000
, pp.
37
49
.
5.
Barbier
,
D.
,
Gey
,
N.
,
Allain
,
S.
,
Bozzolo
,
N.
, and
Humbert
,
M.
, “
Analysis of the Tensile Behavior of a TWIP Steel Based on the Texture and Microstructure Evolutions
,”
Mater. Sci. Eng., A
, Vol.
500
(
1–2
),
2009
, pp.
196
206
. https://doi.org/10.1016/j.msea.2008.09.031
6.
Gutierrez-Urrutia
,
I.
,
Zaefferer
,
S.
, and
Raabe
,
D.
, “
The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP Steel
,”
Mater. Sci. Eng., A
, Vol.
527
(
15
),
2010
, pp.
3552
3560
. https://doi.org/10.1016/j.msea.2010.02.041
7.
Gutierrez-Urrutia
,
I.
and
Raabe
,
D.
, “
Dislocation and Twin Substructure Evolution during Strain Hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP Steel Observed by Electron Channeling Contrast Imaging
,”
Acta Mater.
, Vol.
59
(
16
),
2011
, pp.
6449
6462
. https://doi.org/10.1016/j.actamat.2011.07.009
8.
Beladi
,
H.
,
Timokhina
,
I. B.
,
Estrin
,
Y.
,
Kim
,
J.
,
De Cooman
,
B. C.
, and
Kim
,
S. K.
, “
Orientation Dependence of Twinning and Strain Hardening Behaviour of a High Manganese Twinning Induced Plasticity Steel With Polycrystalline Structure
,”
Acta Mater.
, Vol.
59
(
20
),
2011
, pp.
7787
7799
. https://doi.org/10.1016/j.actamat.2011.08.031
9.
Kim
,
J.
,
Estrin
,
Y.
,
Beladi
,
H.
,
Timokhina
,
I.
,
Chin
,
K. G.
,
Kim
,
S. K.
, and
De Cooman
,
B. C.
, “
Constitutive Modeling of the Tensile Behavior of Al-TWIP Steel
,”
Metall. Mater. Trans. A
, Vol.
43A
,
2012
, pp.
479
490
. https://doi.org/10.1007/s11661-011-0898-2
10.
Steinmetz
,
D. R.
,
Jäpel
,
T.
,
Wietbrock
,
B.
,
Eisenlohr
,
P.
,
Gutierrez-Urrutia
,
I.
,
Saeed-Akbari
,
A.
,
Hickel
,
T.
,
Roters
,
F.
, and
Raabe
,
D.
, “
Revealing the Strain-hardening Behavior of Twinning-induced Plasticity Steels: Theory, Simulations, Experiments
,”
Acta Mater.
, Vol.
61
(
2
),
2013
, pp.
494
510
. https://doi.org/10.1016/j.actamat.2012.09.064
11.
Park
,
K.-T.
,
Jin
,
K. G.
,
Han
,
S. H.
,
Hwang
,
S. W.
,
Choi
,
K.
, and
Lee
,
C. S.
, “
Stacking Fault Energy and Plastic Deformation of Fully Austenitic High Manganese Steels: Effect of Al Addition
,”
Mater. Sci. Eng., A
, Vol.
527
(
16–17
),
2010
, pp.
3651
3661
. https://doi.org/10.1016/j.msea.2010.02.058
12.
Mahajan
,
S.
and
Chin
,
G. Y.
, “
Formation of Deformation Twins in f.c.c. Crystals
,”
Acta Metall.
, Vol.
21
(
10
),
1973
, pp.
1353
1363
. https://doi.org/10.1016/0001-6160(73)90085-0
13.
El-Danaf
,
E.
,
Kalidindi
,
S. R.
, and
Doherty
,
R. D.
, “
Influence of Grain Size and Stacking-fault Energy on Deformation Twinning in fcc Metals
,”
Metall. Mater. Trans. A
, Vol.
30A
,
1999
, pp.
1223
1233
. https://doi.org/10.1007/s11661-999-0272-9
14.
Gutierrez-Urrutia
,
I.
,
Zaefferer
,
S.
, and
Raabe
,
D.
, “
Electron Channeling Contrast Imaging of Twins and Dislocations in Twinning-induced Plasticity Steels Under Controlled Diffraction Conditions in a Scanning Electron Microscope
,”
Scr. Mater.
, Vol.
61
(
7
),
2009
, pp.
737
740
. https://doi.org/10.1016/j.scriptamat.2009.06.018
15.
Gutierrez-Urrutia
,
I.
and
Raabe
,
D.
, “
Multistage Strain Hardening through Dislocation Substructure and Twinning in a High Strength and Ductile Weight-reduced Fe-Mn-Al-C Steel
,”
Acta Mater.
, Vol.
60
(
16
),
2012
, pp.
5791
5802
. https://doi.org/10.1016/j.actamat.2012.07.018
16.
Springer
,
H.
and
Raabe
,
D.
, “
Rapid Alloy Prototyping: Compositional and Thermo-mechanical High Throughput Bulk Combinatorial Design of Structural Materials Based on the Example of 30Mn-1.2C-xAl Triplex Steels
,”
Acta Mater.
, Vol.
60
(
12
),
2012
, pp.
4950
4959
. https://doi.org/10.1016/j.actamat.2012.05.017
17.
Rémy
,
L.
, “
Kinetics of f.c.c. Deformation Twinning and Its Relationship to Stress-Strain Behaviour
,”
Acta Metall.
, Vol.
26
(
3
),
1978
, pp.
443
451
. https://doi.org/10.1016/0001-6160(78)90170-0
18.
De Cooman
,
B. C.
,
Chen
,
L.
,
Kim
,
H. S.
,
Estrin
,
Y.
,
Kim
,
S. K.
, and
Voswinckel
,
H.
, “
State-of-the-Science of High Manganese TWIP Steels for Automotive Applications
,”
Microstructure and Texture in Steels
,
Haldar
A.
,
Suwas
S.
, and
Bhattacharjee
D.
, Eds.,
Springer
,
New York
,
2009
, pp.
165
183
.
19.
Allain
,
S.
,
Chateau
,
J. P.
, and
Bouaziz
,
O.
, “
A Physical Model of the Twinning-induced Plasticity Effect in a High Manganese Austenitic Steel
,”
Mater. Sci. Eng., A
, Vols.
387–389
,
2004
, pp.
143
147
.
20.
Rémy
,
L.
and
Pineau
,
A.
, “
Twinning and Strain-induced F.C.C. –> H.C.P. Transformation in the Fe-Mn-Cr-C System
,”
Mater. Sci. Eng.
, Vol.
28
(
1
),
1977
, pp.
99
107
. https://doi.org/10.1016/0025-5416(77)90093-3
21.
Allain
,
S.
,
Chateau
,
J. P.
,
Bouaziz
,
O.
,
Migot
,
S.
, and
Guelton
,
N.
, “
Correlations between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys
,”
Mater. Sci. Eng., A
, Vols.
387–389
,
2004
, pp.
158
162
.
22.
Grässel
,
O.
,
Krüger
,
L.
,
Frommeyer
,
G.
, and
Meyer
,
L. W.
, “
High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development—Properties—Application
,”
Int. J. Plast.
, Vol.
16
,
2000
, pp.
1391
1409
. https://doi.org/10.1016/S0749-6419(00)00015-2
23.
Dumay
,
A.
,
Chateau
,
J. P.
,
Allain
,
S.
,
Migot
,
S.
, and
Bouaziz
,
O.
, “
Influence of Addition Elements on the Stacking-fault Energy and Mechanical Properties of an Austenitic Fe-Mn-C Steel
,”
Mater. Sci. Eng., A
, Vols.
483–484
,
2008
, pp.
184
187
.
24.
Chen
,
L.
,
Zhao
,
Y.
, and
Qin
,
X.
, “
Some Aspects of High Manganese Twinning-induced Plasticity (TWIP) Steel, a Review
,”
Acta Metall. Sin.
, Vol.
26
(
1
),
2013
, pp.
1
15
.
25.
Scott
,
C.
,
Guelton
,
N.
,
Allain
,
S.
, and
Faral
,
M.
, “
The Development of a New Fe-Mn-C Austenitic Steel for Automotive Applications
,”
Developments in Sheet Products for Automotive Applications: Proceedings of the Materials Science and Technology Conference
, Vol.
2
,
2005
,
TMS
,
Warrendale, PA
, pp.
127
138
.
26.
Idrissi
,
H.
,
Ryelandt
,
L.
,
Veron
,
M.
,
Schryvers
,
D.
, and
Jacques
,
P. J.
, “
Is There a Relationship between the Stacking Fault Character and the Activated Mode of Plasticity of Fe-Mn-based Austenitic Steels?
Scr. Mater., Vol.
60
(
11
),
2009
, pp.
941
944
. https://doi.org/10.1016/j.scriptamat.2009.01.040
27.
Shiekhelsouk
,
M. N.
,
Favier
,
V.
,
Inal
,
K.
, and
Cherkaoui
,
M.
, “
Modelling the Behaviour of Polycrystalline Austenitic Steel with Twinning-induced Plasticity Effect
,”
Int. J. Plast.
, Vol.
25
(
1
),
2009
, pp.
105
133
. https://doi.org/10.1016/j.ijplas.2007.11.004
28.
Favier
,
V.
and
Barbier
,
D.
, “
Micromechanical Modelling of Twinning-induced Plasticity Steels
,”
Scr. Mater.
, Vol.
66
,
2012
, pp.
972
977
. https://doi.org/10.1016/j.scriptamat.2011.12.017
29.
Karaman
,
I.
,
Sehitoglu
,
H.
,
Beaudoin
,
A. J.
,
Chumlyakov
,
Y. I.
,
Maier
,
H. J.
, and
Tomé
,
C. N.
, “
Modeling the Deformation Behavior of Hadfield Steel Single and Polycrystals Due to Twinning and Slip
,”
Acta Mater.
, Vol.
48
(
9
),
2000
, pp.
2031
2047
. https://doi.org/10.1016/S1359-6454(00)00051-3
30.
Karaman
,
I.
,
Sehitoglu
,
H.
,
Maier
,
H. J.
, and
Chumlyakov
,
Y. I.
, “
Competing Mechanisms and Modeling of Deformation in Austenitic Stainless Steel Single Crystals with and without Nitrogen
,”
Acta Mater.
, Vol.
49
(
19
),
2001
, pp.
3919
3933
. https://doi.org/10.1016/S1359-6454(01)00296-8
31.
Christian
,
J. W.
and
Mahajan
,
S.
, “
Deformation Twinning
,”
Prog. Mater. Sci.
, Vol.
39
(
1–2
),
1995
, pp.
1
157
. https://doi.org/10.1016/0079-6425(94)00007-7
32.
Allain
,
S.
,
Cugy
,
P.
,
Scott
,
C.
,
Chateau
,
J. P.
,
Rusinek
,
A.
, and
Deschamps
,
A.
, “
The Influence of Plastic Instabilities on the Mechanical Properties of a High-manganese Austenitic FeMnC Steel
,”
Int. J. Mater. Res.
, Vol.
99
(
7
),
2008
, pp.
734
738
. https://doi.org/10.3139/146.101693
33.
Zavattieri
,
P. D.
,
Savic
,
V.
,
Hector
,
J. L. G.
,
Fekete
,
J. R.
,
Tong
,
W.
, and
Xuan
,
Y.
, “
Spatio-temporal Characteristics of the Portevin-Le Chatelier Effect in Austenitic Steel with Twinning Induced Plasticity
,”
Int. J. Plast.
, Vol.
25
,
2009
, pp.
2298
2330
. https://doi.org/10.1016/j.ijplas.2009.02.008
34.
Allain
,
S.
,
Chateau
,
J. P.
,
Dahmoun
,
D.
, and
Bouaziz
,
O.
, “
Modeling of Mechanical Twinning in a High Manganese Content Austenitic Steel
,”
Mater. Sci. Eng., A
, Vols.
387–389
,
2004
, pp.
272
276
.
35.
Lee
,
Y.-K.
, “
Microstructural Evolution during Plastic Deformation of Twinning-induced Plasticity Steels
,”
Scr. Mater.
, Vol.
66
(
12
),
2012
, pp.
1002
1006
. https://doi.org/10.1016/j.scriptamat.2011.12.016
36.
Vercammen
,
S.
,
Blanpain
,
B.
,
De Cooman
,
B. C.
, and
Wollants
,
P.
, “
Cold Rolling Behaviour of an Austenitic Fe-30Mn-3Al-3Si TWIP-steel: The Importance of Deformation Twinning
,”
Acta Mater.
, Vol.
52
(
7
),
2004
, pp.
2005
2012
. https://doi.org/10.1016/j.actamat.2003.12.040
37.
Kim
,
J.-K.
,
Chen
,
L.
,
Kim
,
H.-S.
,
Kim
,
S.-K.
,
Estrin
,
Y.
, and
De Cooman
,
B.
, “
On the Tensile Behavior of High-manganese Twinning-induced Plasticity Steel
,”
Metall. Mater. Trans. A
, Vol.
40
(
13
),
2009
, pp.
3147
3158
. https://doi.org/10.1007/s11661-009-9992-0
38.
De Cooman
,
B. C.
,
Kim
,
J.
, and
Lee
,
S.
, “
Heterogeneous Deformation in Twinning-induced Plasticity Steel
,”
Scr. Mater.
, Vol.
66
(
12
),
2012
, pp.
986
991
. https://doi.org/10.1016/j.scriptamat.2012.02.028
39.
Jimenez
,
J. A.
and
Frommeyer
,
G.
, “
Analysis of the Microstructure Evolution during Tensile Testing at Room Temperature of High-manganese Austenitic Steel
,”
Mater. Charact.
, Vol.
61
(
2
),
2010
, pp.
221
226
. https://doi.org/10.1016/j.matchar.2009.11.013
40.
Meng
,
L.
,
Yang
,
P.
,
Xie
,
Q.
,
Ding
,
H.
, and
Tang
,
Z.
, “
Dependence of Deformation Twinning on Grain Orientation in Compressed High Manganese Steels
,”
Scr. Mater.
, Vol.
56
(
11
),
2007
, pp.
931
934
. https://doi.org/10.1016/j.scriptamat.2007.02.028
41.
Kwon
,
O.
,
Lee
,
K.
,
Kim
,
G.
, and
Chin
,
K. G.
, “
New Trends in Advanced High Strength Steel Developments for Automotive Applications
,”
Mater. Sci. Forum
, Vols.
638–642
,
2010
, pp.
136
141
. https://doi.org/10.4028/www.scientific.net/MSF.638-642.136
42.
Frommeyer
,
G.
,
Brüx
,
U.
, and
Neumann
,
P.
, “
Supra-ductile and High-strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes
,”
ISIJ Int.
, Vol.
43
(
3
),
2003
, pp.
438
446
. https://doi.org/10.2355/isijinternational.43.438
43.
Curtze
,
S.
and
Kuokkala
,
V. T.
, “
Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate
,”
Acta Mater.
, Vol.
58
(
15
),
2010
, pp.
5129
5141
. https://doi.org/10.1016/j.actamat.2010.05.049
44.
Xu
,
S.
,
Ruan
,
D.
,
Beynon
,
J. H.
, and
Rong
,
Y.
, “
Dynamic Tensile Behaviour of TWIP Steel under Intermediate Strain Rate Loading
,”
Mater. Sci. Eng., A
, Vol.
573
,
2013
, pp.
132
140
. https://doi.org/10.1016/j.msea.2013.02.062
45.
Scott
,
C.
,
Allain
,
S.
,
Faral
,
M.
, and
Guelton
,
N.
, “
The Development of a New Fe-Mn-C Austenitic Steel for Automotive Applications
,”
Rev. Metall./Cah. Inf. Tech.
, Vol.
103
(
6
),
2006
, pp.
293
302
. https://doi.org/10.1051/metal:2006142
46.
Chen
,
L.
,
Kim
,
H. S.
,
Kim
,
S. K.
, and
De Cooman
,
B. C.
, “
Localized Deformation due to Portevin-Le Chatelier Effect in 18Mn-0.6C TWIP Austenitic Steel
,”
ISIJ Int.
, Vol.
47
(
12
),
2007
, pp.
1804
1812
. https://doi.org/10.2355/isijinternational.47.1804
47.
Niendorf
,
T.
,
Lotze
,
C.
,
Canadinc
,
D.
,
Frehn
,
A.
, and
Maier
,
H. J.
, “
The Role of Monotonic Pre-deformation on the Fatigue Performance of a High-manganese Austenitic TWIP Steel
,”
Mater. Sci. Eng., A
, Vol.
499
(
1–2
),
2009
, pp.
518
524
. https://doi.org/10.1016/j.msea.2008.09.033
48.
Chateau
,
J. P.
,
Dumay
,
A.
,
Allain
,
S.
, and
Jacques
,
A.
, “
Precipitation Hardening of a FeMnC TWIP Steel by Vanadium
,”
15th International Conference on the Strength of Materials (ICSMA-15)
, August 16–21,
2009
, Dresden, Germany, Technische Universität Dresden.
49.
Scott
,
C.
,
Remy
,
B.
,
Collet
,
J. L.
,
Cael
,
A.
,
Bao
,
C.
,
Danoix
,
F.
,
Malard
,
B.
, and
Curfs
,
C.
, “
Precipitation Strengthening in High Manganese Austenitic TWIP Steels
,”
Int. J. Mater. Res.
, Vol.
102
(
5
),
2011
, pp.
538
549
. https://doi.org/10.3139/146.110508
50.
Qian
,
L.
,
Guo
,
P.
,
Meng
,
J.
, and
Zhang
,
F.
, “
Unusual Grain-size and Strain-rate Effects on the Serrated Flow in FeMnC Twin-induced Plasticity Steels
,”
J. Mater. Sci.
, Vol.
48
,
2013
, pp.
1669
1674
. https://doi.org/10.1007/s10853-012-6925-x
51.
Bouaziz
,
O.
, “
Strain-hardening of Twinning-induced Plasticity Steels
,”
Scr. Mater.
, Vol.
66
(
12
),
2012
, pp.
982
985
. https://doi.org/10.1016/j.scriptamat.2011.11.029
52.
Ueji
,
R.
,
Tsuchida
,
N.
,
Terada
,
D.
,
Tsuji
,
N.
,
Tanaka
,
Y.
,
Takemura
,
A.
, and
Kunishige
,
K.
, “
Tensile Properties and Twinning Behavior of High Manganese Austenitic Steel with Fine-grained Structure
,”
Scr. Mater.
, Vol.
59
(
9
),
2008
, pp.
963
966
. https://doi.org/10.1016/j.scriptamat.2008.06.050
53.
Gutierrez-Urrutia
,
I.
and
Raabe
,
D.
, “
Grain Size Effect on Strain Hardening in Twinning-induced Plasticity Steels
,”
Scr. Mater.
, Vol.
66
,
2012
, pp.
992
996
. https://doi.org/10.1016/j.scriptamat.2012.01.037
54.
Lebedkina
,
T. A.
,
Lebyodkin
,
M. A.
,
Chateau
,
J. P.
,
Jacques
,
A.
, and
Allain
,
S.
, “
On the Mechanism of Unstable Plastic Flow in an Austenitic FeMnC TWIP Steel
,”
Mater. Sci. Eng., A
, Vol.
519
(
1–2
),
2009
, pp.
147
154
. https://doi.org/10.1016/j.msea.2009.04.067
55.
Chateau
,
J. P.
,
Lebedkina
,
T. A.
,
Lebyodkin
,
M. A.
,
Jacques
,
A.
, and
Allain
,
S.
, “
Kinematics of Deformation Bands in an Austenitic FeMnC TWIP Steel
,”
15th International Conference on the Strength of Materials (ICSMA-15)
, August 16–21,
2009
, Dresden, Germany, Technische Universität Dresden.
56.
Mataya
,
M. C.
,
Carr
,
M. J.
, and
Krauss
,
G.
, “
Flow Localization and Shear Band Formation in a Precipitation Strengthened Austenitic Stainless Steel
,”
Metall. Trans. A
, Vol.
13
(
7
),
1982
, pp.
1263
1274
. https://doi.org/10.1007/BF02645510
57.
Li
,
N.
,
Wang
,
Y. D.
,
Lin Peng
,
R.
,
Sun
,
X.
,
Liaw
,
P. K.
,
Wu
,
G. L.
,
Wang
,
L.
, and
Cai
,
H. N.
, “
Localized Amorphism after High-strain-rate Deformation in TWIP Steel
,”
Acta Mater.
, Vol.
59
(
16
),
2011
, pp.
6369
6377
. https://doi.org/10.1016/j.actamat.2011.06.048
58.
Scavino
,
G.
,
D'aiuto
,
F.
,
Matteis
,
P.
,
Russo Spena
,
P.
, and
Firrao
,
D.
, “
Plastic Localization Phenomena in a Mn-alloyed Austenitic Steel
,”
Metall. Mater. Trans. A
, Vol.
41A
,
2010
, pp.
1493
1501
. https://doi.org/10.1007/s11661-010-0191-9
59.
Hamada
,
A. S.
,
Haggag
,
F. M.
, and
Porter
,
D. A.
, “
Non-destructive Determination of the Yield Strength and Flow Properties of High-manganese Twinning-induced Plasticity Steel
,”
Mater. Sci. Eng., A
, Vol.
558
,
2012
, pp.
766
770
. https://doi.org/10.1016/j.msea.2012.08.066
60.
Kalidindi
,
S. R.
and
Pathak
,
S.
, “
Determination of the Effective Zero-point and the Extraction of Spherical Nanoindentation Stress-Strain Curves
,”
Acta Mater.
, Vol.
56
,
2008
, pp.
3523
3532
. https://doi.org/10.1016/j.actamat.2008.03.036
61.
Bouaziz
,
O.
and
Guelton
,
N.
, “
Modelling of TWIP Effect on Work-hardening
,”
Mater. Sci. Eng., A
, Vols.
319–321
,
2001
, pp.
246
249
.
62.
Gerold
,
V.
and
Karnthaler
,
H. P.
, “
On the Origin of Planar Slip in f.c.c. Alloys
,”
Acta Metall.
, Vol.
37
(
8
),
1989
, pp.
2177
2183
. https://doi.org/10.1016/0001-6160(89)90143-0
63.
Dastur
,
Y. N.
and
Leslie
,
W. C.
, “
Mechanism of Work Hardening in Hadfield Manganese Steel
,”
Metall. Trans. A
, Vol.
12A
(
5
),
1981
, pp.
749
759
.
64.
De Cooman
,
B. C.
,
Chen
,
L.
,
Kim
,
H. S.
,
Estrin
,
Y.
,
Kim
,
S. K.
, and
Voswinckel
,
H.
, “
Review of the Mechanical Properties of High Strength, High-Mn TWIP Steels for Automotive Applications
,”
New Developments on Metallurgy and Applications of High Strength Steels
,
TMS
,
Warrendale, PA
,
2008
, pp.
69
83
.
65.
Xiong
,
Z. -P.
,
Ren
,
X. -P.
,
Bao
,
W. -P.
,
Li
,
S. -X.
, and
Qu
,
H. -T.
, “
Dynamic Mechanical Properties of the Fe-30Mn-3Si-4Al TWIP Steel after Different Heat Treatments
,”
Mater. Sci. Eng., A
, Vol.
530
,
2011
, pp.
426
431
. https://doi.org/10.1016/j.msea.2011.09.106
66.
Jin
,
J. E.
and
Lee
,
Y. K.
, “
Effects of Al on Microstructure and Tensile Properties of C-bearing High Mn TWIP Steel
,”
Acta Mater.
, Vol.
60
(
4
),
2012
, pp.
1680
1688
. https://doi.org/10.1016/j.actamat.2011.12.004
67.
Hamada
,
A. S.
,
Karjalainen
,
L. P.
,
Ferraiuolo
,
A.
,
Gil Sevillano
,
J.
,
de las Cuevas
,
F.
,
Pratolongo
,
G.
, and
Reis
,
M.
, “
Fatigue Behavior of Four High-Mn Twinning Induced Plasticity Effect Steels
,”
Metall. Mater. Trans. A
, Vol.
41
(
5
),
2010
, pp.
1102
1108
. https://doi.org/10.1007/s11661-010-0193-7
68.
Peng
,
X.
,
Zhu
,
D.
,
Hu
,
Z. Q.
,
Yi
,
W.
,
Liu
,
H. W.
, and
Wang
,
M.
, “
Stacking Fault Energy and Tensile Deformation Behavior of High-Carbon Twinning-Induced Plasticity Steels: Effect of Cu Addition
,”
Mater. Des.
, Vol.
45
,
2013
, pp.
518
523
. https://doi.org/10.1016/j.matdes.2012.09.014
69.
Kim
,
J.
,
Lee
,
S. -J.
, and
De Cooman
,
B. C.
, “
Effect of Al on the Stacking Fault Energy of Fe-18Mn-0.6C Twinning-induced Plasticity
,”
Scr. Mater.
, Vol.
65
(
4
),
2011
, pp.
363
366
. https://doi.org/10.1016/j.scriptamat.2011.05.014
70.
Mujica
,
L.
,
Weber
,
S.
,
Hunold
,
G.
, and
Theisen
,
W.
, “
Development and Characterization of Novel Corrosion-resistant TWIP Steels
,”
Steel Res. Int.
, Vol.
82
(
1
),
2011
, pp.
26
31
. https://doi.org/10.1002/srin.201000219
71.
Hamada
,
A. S.
,
Karjalainen
,
L. P.
,
Misra
,
R. D. K.
, and
Talonen
,
J.
, “
Contribution of Deformation Mechanisms to Strength and Ductility in Two Cr-Mn Grade Austenitic Stainless Steels
,”
Mater. Sci. Eng., A
, Vol.
559
,
2013
, pp.
336
344
. https://doi.org/10.1016/j.msea.2012.08.108
72.
Bouaziz
,
O.
,
Allain
,
S.
, and
Scott
,
C.
, “
Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-induced Plasticity Steels
,”
Scr. Mater.
, Vol.
58
(
6
),
2008
, pp.
484
487
. https://doi.org/10.1016/j.scriptamat.2007.10.050
73.
Allain
,
S.
,
Chateau
,
J. P.
, and
Bouaziz
,
O.
, “
Constitutive Model of the TWIP Effect in a Polycrystalline High Manganese Content Austenitic Steel
,”
Steel Res.
, Vol.
73
(
6
),
2002
, pp.
299
302
.
74.
Estrin
,
Y.
and
Mecking
,
H.
, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-parameter Models
,”
Acta Metall.
, Vol.
32
(
1
),
1984
, pp.
57
70
. https://doi.org/10.1016/0001-6160(84)90202-5
75.
Huang
,
M.
,
Bouaziz
,
O.
,
Barbier
,
D.
, and
Allain
,
S.
, “
Modelling the Effect of Carbon on Deformation Behaviour of Twinning Induced Plasticity Steels
,”
J. Mater. Sci.
, Vol.
46
,
2011
, pp.
7410
7414
. https://doi.org/10.1007/s10853-011-5703-5
76.
Bouaziz
,
O.
,
Zurob
,
H.
,
Chehab
,
B.
,
Embury
,
J. D.
,
Allain
,
S.
, and
Huang
,
M.
, “
Effect of Chemical Composition on Work Hardening of Fe-Mn-C TWIP Steels
,”
Mater. Sci. Technol.
, Vol.
27
(
3
),
2011
, pp.
707
709
. https://doi.org/10.1179/026708309X12535382371852
77.
Kim
,
J. K.
,
Estrin
,
Y.
,
Beladi
,
H.
,
Kim
,
S. K.
,
Chin
,
K. G.
, and
De Cooman
,
B. C.
, “
Constitutive Modeling of TWIP Steel in Uni-axial Tension
,”
Mater. Sci. Forum
, Vols.
654–656
,
2010
, pp.
270
273
. https://doi.org/10.4028/www.scientific.net/MSF.654-656.270
78.
Kubin
,
L. P.
and
Estrin
,
Y.
, “
Evolution of Dislocation Densities and the Critical Conditions for the Portevin-Le Chatelier Effect
,”
Acta Metall. Mater.
, Vol.
38
(
5
),
1990
, pp.
697
708
. https://doi.org/10.1016/0956-7151(90)90021-8
79.
Belotteau
,
J.
,
Berdin
,
C.
,
Forest
,
S.
,
Parrot
,
A.
, and
Prioul
,
C.
, “
Mechanical Behavior and Crack Tip Plasticity of a Strain Aging Sensitive Steel
,”
Mater. Sci. Eng., A
, Vol.
526
(
1–2
),
2009
, pp.
156
165
. https://doi.org/10.1016/j.msea.2009.07.013
80.
Lee
,
M. -G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
,
Wagoner
,
R. H.
, and
Chung
,
K.
, “
A Practical Two-surface Plasticity Model and Its Application to Spring-back Prediction
,”
Int. J. Plast.
, Vol.
23
(
7
),
2007
, pp.
1189
1212
. https://doi.org/10.1016/j.ijplas.2006.10.011
81.
Ahn
,
K.
,
Yoo
,
D.
,
Seo
,
M. H.
,
Park
,
S. -H.
, and
Chung
,
K.
, “
Springback Prediction of TWIP Automotive Sheets
,”
Met. Mater. Int.
, Vol.
15
(
4
),
2009
, pp.
637
647
. https://doi.org/10.1007/s12540-009-0637-z
82.
Rusinek
,
A.
,
RodrÌguez-MartÌnez
,
J. A.
,
Klepaczko
,
J. R.
, and
Pecherski
,
R. B.
, “
Analysis of Thermo-visco-plastic Behaviour of Six High Strength Steels
,”
Mater. Des.
, Vol.
30
(
5
),
2009
, pp.
1748
1761
. https://doi.org/10.1016/j.matdes.2008.07.034
83.
Asaro
,
R. J.
, “
Crystal Plasticity
,”
J. Appl. Mech.
, Vol.
50
,
1983
, pp.
921
934
. https://doi.org/10.1115/1.3167205
84.
Asaro
,
R. J.
and
Needleman
,
A.
, “
Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
, Vol.
33
(
6
),
1985
, pp.
923
953
. https://doi.org/10.1016/0001-6160(85)90188-9
85.
Kalidindi
,
S. R.
, “
Incorporation of Deformation Twinning in Crystal Plasticity Models
,”
J. Mech. Phys. Solids
, Vol.
46
(
2
),
1998
, pp.
267
290
. https://doi.org/10.1016/S0022-5096(97)00051-3
86.
Staroselsky
,
A.
and
Anand
,
L.
, “
A Constitutive Model for hcp Materials Deforming by Slip and Twinning: Application to Magnesium Alloy AZ31B
,”
Int. J. Plast.
, Vol.
19
(
10
),
2003
, pp.
1843
1864
. https://doi.org/10.1016/S0749-6419(03)00039-1
87.
Cherkaoui
,
M.
, “
Constitutive Equations for Twinning and Slip in Low-stacking-fault-energy Metals: A Crystal Plasticity-type Model for Moderate Strains
,”
Philos. Mag.
, Vol.
83
(
31–34
),
2003
, pp.
3945
3958
. https://doi.org/10.1080/14786430310001603355
88.
Prakash
,
A.
,
Weygand
,
S. M.
, and
Riedel
,
H.
, “
Modeling the Evolution of Texture and Grain Shape in Mg Alloy AZ31 Using the Crystal Plasticity Finite Element Method
,”
Comput. Mater. Sci.
, Vol.
45
(
3
),
2009
, pp.
744
750
. https://doi.org/10.1016/j.commatsci.2008.06.015
89.
Turteltaub
,
S.
and
Suiker
,
A. S. J.
, “
Transformation-induced Plasticity in Ferrous Alloys
,”
J. Mech. Phys. Solids
, Vol.
53
(
8
),
2005
, pp.
1747
1788
. https://doi.org/10.1016/j.jmps.2005.03.004
90.
Alley
,
E. S.
,
Sawamiphakdi
,
K.
,
Anderson
,
P. I.
, and
Neu
,
R. W.
, “
Modeling the Influence of Microstructure in Rolling Contact Fatigue
,”
J. ASTM Int.
, Vol.
7
(
2
),
2010
, pp.
1
20
. https://doi.org/10.1520/JAI102629
91.
Roters
,
F.
,
Eisenlohr
,
P.
,
Hantcherli
,
L.
,
Tjahjanto
,
D. D.
,
Bieler
,
T. R.
, and
Raabe
,
D.
, “
Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications
,”
Acta Mater.
, Vol.
58
(
4
),
2010
, pp.
1152
1211
. https://doi.org/10.1016/j.actamat.2009.10.058
92.
Lebensohn
,
R. A.
and
Tomé
,
C. N.
, “
A Self-consistent Viscoplastic Model: Prediction of Rolling Textures of Anisotropic Polycrystals
,”
Mater. Sci. Eng., A
, Vol.
175
(
1–2
),
1994
, pp.
71
82
. https://doi.org/10.1016/0921-5093(94)91047-2
93.
Prakash
,
A.
,
Hochrainer
,
T.
,
Reisacher
,
E.
, and
Riedel
,
H.
, “
Twinning Models in Self-consistent Texture Simulations of TWIP Steels
,”
Steel Res. Int.
, Vol.
45
,
2009
, pp.
788
792
.
94.
Tomé
,
C. N.
,
Lebensohn
,
R. A.
, and
Kocks
,
U. F.
, “
A Model for Texture Development Dominated by Deformation Twinning: Application to Zirconium Alloys
,”
Acta Metall. Mater.
, Vol.
39
(
11
),
1991
, pp.
2667
2680
. https://doi.org/10.1016/0956-7151(91)90083-D
95.
Kalidindi
,
S. R.
, “
Modeling Anisotropic Strain Hardening and Deformation Textures in Low Stacking Fault Energy fcc Metals
,”
Int. J. Plast.
, Vol.
17
(
6
),
2001
, pp.
837
860
. https://doi.org/10.1016/S0749-6419(00)00071-1
96.
Dancette
,
S.
,
Melchior
,
M.
,
Delannay
,
L.
,
Renard
,
K.
, and
Jacques
,
P.
, “
Strain Heterogeneity and Local Anisotropy in TWIP Steels
,”
AIP Conf. Proc.
, Vol.
1353
(
1
),
2011
, pp.
145
150
.
97.
Dancette
,
S.
,
Delannay
,
L.
,
Renard
,
K.
,
Melchior
,
M. A.
, and
Jacques
,
P. J.
, “
Crystal Plasticity Modeling of Texture Development and Hardening in TWIP Steels
,”
Acta Mater.
, Vol.
60
(
5
),
2012
, pp.
2135
2145
. https://doi.org/10.1016/j.actamat.2012.01.015
98.
Barbier
,
D.
,
Favier
,
V.
, and
Bolle
,
B.
, “
Modeling the Deformation Textures and Microstructural Evolutions of a Fe-Mn-C TWIP Steel during Tensile and Shear Testing
,”
Mater. Sci. Eng., A
, Vol.
540
,
2012
, pp.
212
225
. https://doi.org/10.1016/j.msea.2012.01.128
99.
Van Houtte
,
P.
,
Li
,
S.
,
Seefeldt
,
M.
, and
Delannay
,
L.
, “
Deformation Texture Prediction: from the Taylor Model to the Advanced Lamel Model
,”
Int. J. Plast.
, Vol.
21
(
3
),
2005
, pp.
589
624
. https://doi.org/10.1016/j.ijplas.2004.04.011
100.
Melchior
,
M.
,
2009
, “
Modelling of Texture and Hardening of TWIP Steel—Advanced Finite Element Representation of Polycrystalline Aggregates
,” Ph.D. Thesis,
Université Catholique de Louvain
, Louvain-la-Neuve, Belgium.
101.
Bracke
,
L.
,
Kestens
,
L.
, and
Penning
,
J.
, “
Direct Observation of the Twinning Mechanism in an Austenitic Fe-Mn-C Steel
,”
Scr. Mater.
, Vol.
61
(
2
),
2009
, pp.
220
222
. https://doi.org/10.1016/j.scriptamat.2009.03.045
102.
Kok
,
S.
,
Beaudoin
,
A. J.
,
Tortorelli
,
D. A.
, and
Lebyodkin
,
M.
, “
A Finite Element Model for the Portevin-Le Chatelier Effect Based on Polycrystal Plasticity
,”
Modell. Simul. Mater. Sci. Eng.
, Vol.
10
,
2002
, pp.
745
763
. https://doi.org/10.1088/0965-0393/10/6/309
103.
Hopperstad
,
O. S.
,
Borvik
,
T.
,
Berstad
,
T.
,
Lademo
,
O. -G.
, and
Benallal
,
A.
, “
A Numerical Study on the Influence of the Portevin-Le Chatelier Effect on Necking in an Aluminium Alloy
,”
Modell. Simul. Mater. Sci. Eng.
, Vol.
15
,
2007
, pp.
747
772
. https://doi.org/10.1088/0965-0393/15/7/004
104.
McCormick
,
P. G.
and
Ling
,
C. P.
, “
Numerical Modelling of the Portevin–Le Chatelier Effect
,”
Acta Metall. Mater.
, Vol.
43
(
5
),
1995
, pp.
1969
1977
. https://doi.org/10.1016/0956-7151(94)00390-4
105.
Estrin
,
Y.
and
Kubin
,
L. P.
, “
Local Strain Hardening and Nonuniformity of Plastic Deformation
,”
Acta Metall.
, Vol.
34
(
12
),
1986
, pp.
2455
2464
. https://doi.org/10.1016/0001-6160(86)90148-3
106.
McCormick
,
P. G.
, “
Theory of Flow Localisation due to Dynamic Strain Ageing
,”
Acta Metall.
, Vol.
36
(
12
),
1988
, pp.
3061
3067
. https://doi.org/10.1016/0001-6160(88)90043-0
107.
Mesarovic
,
S.
, “
Dynamic Strain Aging and Plastic Instabilities
,”
J. Mech. Phys. Solids
, Vol.
43
(
5
),
1995
, pp.
671
700
. https://doi.org/10.1016/0022-5096(95)00010-G
108.
Hähner
,
P.
and
Rizzi
,
E.
, “
On the Kinematics of Portevin-Le Chatelier Bands: Theoretical and Numerical Modelling
,”
Acta Mater.
, Vol.
51
,
2003
, pp.
3385
3397
. https://doi.org/10.1016/S1359-6454(03)00122-8
109.
Fressengeas
,
C.
,
Beaudoin
,
A. J.
,
Lebyodkin
,
M.
,
Kubin
,
L. P.
, and
Estrin
,
Y.
, “
Dynamic Strain Aging: A Coupled Dislocation-Solute Dynamic Model
,”
Mater. Sci. Eng., A
, Vols.
400–401
,
2005
, pp.
226
230
.
110.
Curtin
,
W. A.
,
Olmsted
,
D. L.
, and
Hector
,
L. G.
, “
A Predictive Mechanism for Dynamic Strain Ageing in Aluminium-Magnesium Alloys
,”
Nat. Mater.
, Vol.
5
(
11
),
2006
, pp.
875
880
. https://doi.org/10.1038/nmat1765
111.
Soare
,
M. A.
and
Curtin
,
W. A.
, “
Solute Strengthening of Both Mobile and Forest Dislocations: The Origin of Dynamic Strain Aging in fcc Metals
,”
Acta Mater.
, Vol.
56
(
15
),
2008
, pp.
4046
4061
. https://doi.org/10.1016/j.actamat.2008.04.027
112.
Butz
,
A.
,
Lossau
,
S.
,
Springub
,
B.
, and
Roters
,
F.
, “
On the Modeling of Dual Phase Steels: Microstructure-based Simulation from the Hot Rolled Sheet to the Deep Drawn Component
,”
International Journal of Material Forming
, Vol.
3
,
2010
, pp.
73
76
. https://doi.org/10.1007/s12289-010-0710-7
113.
Barlat
,
F.
and
Lian
,
K.
, “
Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheets under Plane Stress Conditions
,”
Int. J. Plast.
, Vol.
5
(
1
),
1989
, pp.
51
66
. https://doi.org/10.1016/0749-6419(89)90019-3
114.
Barlat
,
F.
,
Brem
,
J. C.
,
Yoon
,
J. W.
,
Chung
,
K.
,
Dick
,
R. E.
,
Lege
,
D. J.
,
Pourboghrat
,
F.
,
Choi
,
S. H.
, and
Chu
,
E.
, “
Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory
,”
Int. J. Plast.
, Vol.
19
(
9
),
2003
, pp.
1297
1319
. https://doi.org/10.1016/S0749-6419(02)00019-0
115.
Chung
,
K.
,
Lee
,
M. -G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
, and
Barlat
,
F.
, “
Spring-back Evaluation of Automotive Sheets Based on Isotropic-kinematic Hardening Laws and Non-quadratic Anisotropic Yield Functions: Part I: Theory and Formulation
,”
Int. J. Plast.
, Vol.
21
(
5
),
2005
, pp.
861
882
. https://doi.org/10.1016/S0749-6419(04)00088-9
116.
Chung
,
K.
,
Ahn
,
K.
,
Yoo
,
D. -H.
,
Chung
,
K. -H.
,
Seo
,
M. -H.
, and
Park
,
S. -H.
, “
Formability of TWIP (Twinning Induced Plasticity) Automotive Sheets
,”
Int. J. Plast.
, Vol.
27
(
1
),
2011
, pp.
52
81
. https://doi.org/10.1016/j.ijplas.2010.03.006
117.
Lee
,
M. -G.
,
Kim
,
D.
,
Kim
,
C.
,
Wenner
,
M. L.
,
Wagoner
,
R. H.
, and
Chung
,
K.
, “
Spring-back Evaluation of Automotive Sheets Based on Isotropic-kinematic Hardening Laws and Non-quadratic Anisotropic Yield Functions: Part II: Characterization of Material Properties
,”
Int. J. Plast.
, Vol.
21
(
5
),
2005
, pp.
883
914
. https://doi.org/10.1016/j.ijplas.2004.05.015
118.
Cornette
,
D.
,
Cugy
,
P.
,
Hildenbrand
,
A.
,
Bouzekri
,
M.
, and
Lovato
,
G.
, “
Ultra High Strength FeMn TWIP Steels for Automotive Safety Parts
,”
Rev. Metall./Cah. Inf. Tech.
, Vol.
102
(
12
),
2005
, pp.
905
918
. https://doi.org/10.1051/metal:2005151
119.
Mújica Roncery
,
L.
,
Weber
,
S.
, and
Theisen
,
W.
, “
Welding of Twinning-induced Plasticity Steels
,”
Scr. Mater.
, Vol.
66
(
12
),
2012
, pp.
997
1001
. https://doi.org/10.1016/j.scriptamat.2011.11.041
120.
Mújica
,
L.
,
Weber
,
S.
,
Thomy
,
C.
, and
Vollertsen
,
F.
, “
Microstructure and Mechanical Properties of Laser Welded Austenitic High Manganese Steels
,”
Sci. Technol. Weld. Joining
, Vol.
14
(
6
),
2009
, pp.
517
522
. https://doi.org/10.1179/136217109X434243
121.
Haferkamp
,
H.
,
Meier
,
O.
, and
Harley
,
K.
, “
Laser Beam Welding of New High Strength Steels for Auto Body Construction
,”
Key Eng. Mater.
, Vol.
344
,
2007
, pp.
723
730
. https://doi.org/10.4028/www.scientific.net/KEM.344.723
122.
Mújica
,
L.
,
Weber
,
S.
,
Pinto
,
H.
,
Thomy
,
C.
, and
Vollertsen
,
F.
, “
Microstructure and Mechanical Properties of Laser-Welded Joints of TWIP and TRIP Steels
,”
Mater. Sci. Eng., A
, Vol.
527
,
2010
, pp.
2071
2078
. https://doi.org/10.1016/j.msea.2009.11.050
123.
Saha
,
D. C.
,
Han
,
S.
,
Chin
,
K. G.
,
Choi
,
I.
, and
Park
,
Y. -D.
, “
Weldability Evaluation and Microstructure Analysis of Resistance-Spot-Welded High-Mn Steel in Automotive Application
,”
Steel Res. Int.
, Vol.
83
(
4
),
2012
, pp.
352
357
. https://doi.org/10.1002/srin.201100324
124.
Keil
,
D.
,
Zinke
,
M.
, and
Pries
,
H.
, “
Weldability of Novel Fe-Mn High-strength Steels for Automotive Applications
,”
Weld. World
, Vol.
55
(
11
),
2011
, pp.
21
30
. https://doi.org/10.1007/BF03321539
125.
Mújica Roncery
,
L.
,
Weber
,
S.
, and
Theisen
,
W.
, “
Development of Mn-Cr-(C-N) Corrosion Resistant Twinning Induced Plasticity Steels: Thermodynamic and Diffusion Calculations, Production, and Characterization
,”
Metall. Mater. Trans. A
, Vol.
41A
,
2010
, pp.
2471
2479
. https://doi.org/10.1007/s11661-010-0334-z
126.
Hamada
,
A. S.
,
Karjalainen
,
L. P.
, and
Puustinen
,
J.
, “
Fatigue Behavior of High-Mn TWIP Steels
,”
Mater. Sci. Eng., A
, Vol.
517
,
2009
, pp.
68
77
. https://doi.org/10.1016/j.msea.2009.03.039
127.
Hamada
,
A. S.
and
Karjalainen
,
L. P.
, “
High-cycle Fatigue Behavior of Ultrafine-grained Austenitic Stainless and TWIP Steels
,”
Mater. Sci. Eng., A
, Vol.
527
,
2010
, pp.
5715
5722
. https://doi.org/10.1016/j.msea.2010.05.035
128.
Kim
,
Y. W.
,
Kim
,
G.
,
Hong
,
S. -G.
, and
Lee
,
C. S.
, “
Energy-based Approach to Predict the Fatigue Life Behavior of Pre-strained Fe-18Mn TWIP Steel
,”
Mater. Sci. Eng., A
, Vol.
528
(
13–14
),
2011
, pp.
4696
4702
. https://doi.org/10.1016/j.msea.2011.02.068
129.
Matteis
,
P.
,
Scavino
,
G.
,
D'aiuto
,
F.
, and
Firrao
,
D.
, “
Fatigue Behavior of Dual-phase and TWIP Steels for Lightweight Automotive Structures
,”
Steel Res. Int.
, Vol.
83
(
10
),
2012
, pp.
950
956
. https://doi.org/10.1002/srin.201100329
130.
Niendorf
,
T.
,
Rubitschek
,
F.
,
Maier
,
H. J.
,
Niendorf
,
J.
,
Richard
,
H. A.
, and
Frehn
,
A.
, “
Fatigue Crack Growth—Microstructure Relationships in a High-manganese Austenitic TWIP Steel
,”
Mater. Sci. Eng., A
, Vol.
527
(
9
),
2010
, pp.
2412
2417
. https://doi.org/10.1016/j.msea.2009.12.012
131.
Karjalainen
,
L. P.
,
Hamada
,
A.
,
Misra
,
R. D. K.
, and
Porter
,
D. A.
, “
Some Aspects of the Cyclic Behavior of Twinning-induced Plasticity Steels
,”
Scr. Mater.
, Vol.
66
(
12
),
2012
, pp.
1034
1039
. https://doi.org/10.1016/j.scriptamat.2011.12.008
132.
Chalant
,
G.
and
Rémy
,
L.
, “
The Slip Character and Low Cycle Fatigue Behaviour: The Influence of F.C.C. Twinning and Strain-induced F.C.C. –> H.C.P. Martensitic Transformation
,”
Acta Metall.
, Vol.
28
(
1
),
1980
, pp.
75
88
. https://doi.org/10.1016/0001-6160(80)90042-5
133.
Lawrence
,
J. F. V.
,
Corten
,
H. T.
, and
McMahon
,
J. C.
, “
Study I—The Effect of Temper Cycle, Mechanical Treatments, Weld Geometry and Welding Conditions on Sheet Steel Spot Weld Fatigue Resistance
,”
Weld. Res. Counc. Bull.
, Vol.
384
,
1993
, pp.
1
24
.
134.
So
,
K. H.
,
Kim
,
J. S.
,
Chun
,
Y. S.
,
Park
,
K. -T.
,
Lee
,
Y. -K.
, and
Lee
,
C. S.
, “
Hydrogen Delayed Fracture Properties and Internal Hydrogen Behavior of a Fe-18Mn-1.5AI-0.6C TWIP Steel
,”
ISIJ Int.
, Vol.
49
(
12
),
2009
, pp.
1952
1959
. https://doi.org/10.2355/isijinternational.49.1952
135.
Somani
,
M. C.
and
Karjalainen
,
L. P.
, “
Innovative Approaches in Physical Simulation and Modeling for Optimal Design and Processing of Advanced High Strength Steels
,”
Mater. Manuf. Processes
, Vol.
25
(
1–3
),
2010
, pp.
133
141
. https://doi.org/10.1080/10426910903158223
136.
McClintock
,
F. A.
and
Argon
,
A. S.
,
Mechanical Behavior of Materials
,
Addison-Wesley
,
Reading, MA
,
1966
.
137.
Helm
,
D.
,
Butz
,
A.
,
Raabe
,
D.
, and
Gumbsch
,
P.
, “
Microstructure-based Description of the Deformation of Metals: Theory and Application
,”
JOM
, Vol.
63
(
4
),
2011
, pp.
26
33
. https://doi.org/10.1007/s11837-011-0056-8
138.
Kraska
,
M.
,
Doig
,
M.
,
Tikhomirov
,
D.
,
Raabe
,
D.
, and
Roters
,
F.
, “
Virtual Material Testing for Stamping Simulations Based on Polycrystal Plasticity
,”
Comput. Mater. Sci.
, Vol.
46
(
2
),
2009
, pp.
383
392
. https://doi.org/10.1016/j.commatsci.2009.03.025
139.
ASTM E338-03
: Standard Test Method of Sharp Notch Tension Testing of High Strength Sheet Materials,
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2003
.
140.
Wang
,
H.
,
Berdin
,
C.
,
Maziere
,
M.
,
Forest
,
S.
,
Prioul
,
C.
,
Parrot
,
A.
, and
Le-Delliou
,
P.
, “
Portevin-Le Chatelier (PLC) Instabilities and Slant Fracture in C-Mn Steel Round Tensile Specimens
,”
Scr. Mater.
, Vol.
64
(
5
),
2011
, pp.
430
433
. https://doi.org/10.1016/j.scriptamat.2010.11.005
This content is only available via PDF.
You do not currently have access to this content.