Abstract

The effects of zinc oxide addition and sintering parameters on the structure and dielectric properties of barium titanate are observed. Different percentage of ZnO ranging from 0.30 to 1 wt. % is doped in barium titanate. Both the doped and undoped samples are sintered at temperatures ranging from 1250°C to 1325°C at different soaking times. The amount of densification of the doped and undoped samples is measured in terms of percentage theoretical density. Grain size and microstructural analysis is performed by a scanning electron microscope (SEM). Lattice parameters and tetragonality of doped and undoped barium titanate are calculated from x-ray diffraction pattern obtained from x-ray diffractometer (XRD) test. Dielectric properties of the samples are measured by an impedance analyzer. It is found that all the doped samples obtain their maximum percentage theoretical density at a lower sintering temperature compared to the undoped sample. SEM study reveals that the doped samples always show smaller grains compared to the undoped sample. Significant grain growth is observed in all of the samples at sintering temperatures above 1300°C. The evidence of surface melting is observed in 1 wt. % ZnO-doped sample soaked at 1325°C for 2 h. The presence of liquid at that sintering condition is explained by the doping mechanism of Zn2+ in BaTiO3. Correlation among the grain size, tetragonality, and dielectric properties of the doped and undoped samples are also discussed.

References

1.
Richerson
,
D. W.
,
Modern Ceramic Engineering
,
Marcel Dekker
,
New York
,
1992
.
2.
Maison
,
W.
,
Kleeberg
,
R.
,
Heimann
,
R. B.
, and
Phanichphant
,
S.
, “
Phase Content, Tetragonality, and Crystallite Size of Nanoscaled Barium Titanate Synthesized by the Catecholate Process: Effect of Calcinations Temperature
,”
J. Eur. Ceram. Soc.
, Vol.
23
,
2003
, pp.
127
132
. https://doi.org/10.1016/S0955-2219(02)00071-7
3.
Burn
,
I.
and
Smyth
,
D. M.
, “
Energy Storage in Ceramic Dielectrics
,”
J. Mater. Sci.
, Vol.
7
,
1972
, pp.
339
343
. https://doi.org/10.1007/BF00555636
4.
Devonshire
,
A. F.
, “
Theory of Barium Titanate: Part I
,”
Phil. Mag.
, Vol.
40
,
1949
, pp.
1040
1063
.
5.
Carter
,
C. B.
and
Norton
,
M. G.
,
Ceramic Materials: Science and Engineering
,
Springer
,
New York
,
2007
.
6.
Lee
,
B. W.
and
Auh
,
K. H.
, “
Effect of Grain Size and Mechanical Processing on the Dielectric Properties of BaTiO3
,”
J. Mater. Res.
, Vol.
10
, No.
6
,
1995
, pp.
1418
1423
.
7.
Moura
,
F.
,
Simoes
,
A. Z.
,
Stojanovie
,
B. D.
,
Zaghete
,
M. A.
,
Longo
,
E.
, and
Varela
,
J. A.
, “
Dielectric and Ferroelectric Characteristics of Barium Zirconate Titanate Ceramic Prepared from Mixed Oxide Method
,”
J. Alloys Comp.
, Vol.
462
,
2008
, pp.
129
134
. https://doi.org/10.1016/j.jallcom.2007.07.077
8.
Wang
,
X.-H.
,
Chen
,
R.-Z.
,
Gui
,
Z.-L.
, and
Li
,
L.-T.
, “
The Grain Size Effect on Dielectric Properties of BaTiO3 Based Ceramics
,”
Mater. Sci. Eng.
, Vol.
B99
,
2003
, pp.
199
202
. https://doi.org/10.1016/S0921-5107(02)00520-2
9.
Kumar
,
U.
,
Wang
,
S. F.
,
Varanasi
,
S.
, and
Dougherty
,
J. P.
, “
Grain Size Effect on the Dielectric Properties of Strontium Barium Titanate, Applications of Ferroelectrics
,”
ISAF’92, Proceedings of the Eighth IEEE International Symposium, Center of Dielectric Studies, Materials Research Laboratory
,
Pennsylvania State University
,
University Park, PA
,
1992
.
10.
Hoshina
,
T.
,
Takizawa
,
K.
,
Li
,
J.
,
Kasama
,
T.
,
Kakemoto
,
H.
, and
Tsurumi
,
T.
, “
Domain Size Effect on Dielectric Properties of BaTiO3 Ceramics
,”
Jpn. J. Appl. Phys.
, Vol.
47
, No.
9
,
2008
, pp.
7607
7611
. https://doi.org/10.1143/JJAP.47.7607
11.
Caballero
,
A. C.
, Jr.
,
Fernández
,
F.
,
Moure
,
C.
, and
Durán
,
P.
, “
ZnO-Doped BaTiO3: Microstructure and Electrical Properties
,”
J. Eur. Ceram. Soc.
, Vol.
17
,
1997
, pp.
513
523
.
12.
Sen
,
D.
,
Mahata
,
T.
,
Patra
,
A. K.
,
Mazumder
,
S.
, and
Sharma
,
B. P.
, “
Effect of Porosity and Pore Morphology on the Low Frequency Dielectric Response in Sintered ZrO2-8 mol % Y2O3 Ceramic Compound
,”
Pramana J. Phys.
, Vol.
63
, No.
2
,
2004
, pp.
309
314
. https://doi.org/10.1007/BF02704990
13.
Caballero
,
A. C.
,
Fernández
,
J. F.
,
Moure
,
C.
,
Durán
,
P.
, and
Chiang
,
Y.-M.
, “
Grain Growth Control and Dopant Distribution in ZnO-Doped BaTiO3
,”
J. Am. Ceram. Soc.
, Vol.
81
, No.
4
,
1998
, pp.
939
944
. https://doi.org/10.1111/j.1151-2916.1998.tb02430.x
14.
Dong
,
G.
,
Ma
,
S.
,
Du
,
J.
, and
Cui
,
J.
, “
Dielectric Properties and Energy Storage Density of ZnO-Doped Ba0.3Sr0.7TiO3 Ceramics
,”
Ceram. Int.
, Vol.
35
,
2009
, pp.
2069
2075
. https://doi.org/10.1016/j.ceramint.2008.11.003
15.
Wang
,
Y.
,
Li
,
L.
,
Qi
,
J.
, and
Gui
,
Z.
, “
Frequency Response of BaZrxTi1−xO3 Ceramics
,”
Mater. Chem. Phys.
, Vol.
76
,
2002
, pp.
250
254
. https://doi.org/10.1016/S0254-0584(01)00534-X
16.
Qi
,
J. Q.
,
Liu
,
B. B.
,
Tian
,
H. Y.
,
Zou
,
H.
,
Yue
,
Z. X.
, and
Li
,
L. T.
, “
Dielectric Properties of Barium Zirconate Titanate (BZT) Ceramics Tailored by Different Donors for High Voltage Applications
,”
Solid State Sci.
, Vol.
14
,
2012
, pp.
1520
1524
. https://doi.org/10.1016/j.solidstatesciences.2012.08.009
17.
Wang
,
Y.
,
Zhuang
,
Z.
, and
Zhou
,
J.
, “
Study of Nb-Zn Co-Doped Ba(Ti,Zr)O3 Ceramics
,”
Mater. Sci.-Poland
, Vol.
25
, No.
1
,
2007
, pp.
121
127
.
18.
Kossoy
,
A.
,
Feldman
,
Y.
,
Korobko
,
R.
,
Wachtel
,
E.
,
Lubomirsky
,
I.
, and
Maier
,
J.
, “
Influence of Point-Defect Reaction Kinetics on the Lattice Parameter of Ce0.8Gd0.2O1.9
,”
Adv. Funct. Mater.
, Vol.
19
, No.
4
,
2009
, pp.
634
641
. https://doi.org/10.1002/adfm.200801162
19.
Waseda
,
Y.
,
Matsubara
,
E.
, and
Shinoda
,
K.
,
X-Ray Diffraction Crystallography
,
Springer
,
New York
,
2011
.
20.
Wong
,
W.
,
Roth
,
R. S.
,
Vanderah
,
T. A.
, and
McMurdie
,
H. F.
, “
Phase Equilibria and Crystallography of Ceramic Oxides
,”
J. Res. Natl. Inst. Stand. Technol.
, Vol.
106
,
2001
, pp.
1097
1134
. https://doi.org/10.6028/jres.106.059
21.
Meaz
,
T. M.
and
Bender Coch
,
C.
, “
X-Ray Diffraction and Mossbauer Spectroscopic Study of Ba0.5xCo0.5xZnxTi12-2xO19 (M type hexagonal ferrite)
,”
Egypt J. Sol.
, Vol.
26
, No.
2
,
2003
, pp.
197
203
.
This content is only available via PDF.
You do not currently have access to this content.