Abstract

Processing parameters of the laser powder bed fusion (LPBF) technique strongly govern achieved performances and manufacturing defects of printed alloys. In this work, it was aimed to study the effects of LPBF printing parameters and subsequent heat treatments on resulted microstructure characteristics and tensile properties of Inconel 718 alloy. Inconel samples were fabricated using three different energy densities. Then, microstructure features such as Lave phase, primary dendrite arm spacing, and internal residual stresses as microstrains of both as-built and heat-treated specimens were determined. It was found that in the range of used energy densities, alterations of phase fractions and average sizes of the Laves phase were insignificant. Decreased energy density led to microstructures with smaller primary dendrite arm spacing and thus principally contributed to enhanced yield and tensile strengths of as-printed samples, whereas increased porosity greatly deteriorated elongation. Moreover, their flow stress curves could be significantly increased by direct aging; however, typical cellular and columnar substructures occurring during the LPBF printing remained. Homogenization treatment could entirely eliminate such substructures and otherwise caused different formations of delta phase when it was performed prior to a delta process.

References

1.
Paulonis
D. F.
and
Schirra
J. J.
, “
Alloy 718 at Pratt & Whitney: Historical Perspective and Future Challenges
,” in
Superalloys 718, 625, 706 and Various Derivatives
, ed.
Loria
E. A.
(
Pittsburgh, PA
:
The Minerals, Metals & Materials Society
,
2001
),
13
23
, https://doi.org/10.7449/2001/Superalloys_2001_13_23
2.
Oliveira
J. P.
,
Santos
T. G.
, and
Miranda
R. M.
, “
Revisiting Fundamental Welding Concepts to Improve Additive Manufacturing: From Theory to Practice
,”
Progress in Materials Science
107
(
2020
): 100590, https://doi.org/10.1016/j.pmatsci.2019.100590
3.
Zhang
Y.
,
Li
Z.
,
Nie
P.
, and
Wu
Y.
, “
Effect of Cooling Rate on the Microstructure of Laser-Remelted INCONEL 718 Coating
,”
Metallurgical and Materials Transaction A
44
, no. 
12
(December
2013
):
5513
5521
, https://doi.org/10.1007/s11661-013-1903-8
4.
Tabernero
I.
,
Lamikiz
A.
,
Martínez
S.
,
Ukar
E.
, and
Figueras
J.
, “
Evaluation of the Mechanical Properties of Inconel 718 Components Built by Laser Cladding
,”
International Journal of Machine Tools and Manufacture
51
, no. 
6
(June
2011
):
465
470
, https://doi.org/10.1016/j.ijmachtools.2011.02.003
5.
Sui
S.
,
Chen
J.
,
Zhang
R.
,
Ming
X.
,
Liu
F.
, and
Lin
X.
, “
The Tensile Deformation Behavior of Laser Repaired Inconel 718 with a Non-uniform Microstructure
,”
Materials Science and Engineering A
688
(
2017
):
480
487
, https://doi.org/10.1016/j.msea.2017.01.110
6.
Ma
M.
,
Wang
Z.
, and
Zeng
X.
, “
Effect of Energy Input on Microstructural Evolution of Direct Laser Fabricated IN718 Alloy
,”
Materials Characterization
106
(
2015
):
420
427
, https://doi.org/10.1016/j.matchar.2015.06.027
7.
Kumar
P.
,
Farah
J.
,
Akram
J.
,
Teng
C.
,
Ginn
J.
, and
Misra
M.
, “
Influence of Laser Processing Parameters on Porosity in Inconel 718 during Additive Manufacturing
,”
International Journal of Advanced Manufacturing Technology
103
, nos. 
1–4
(July
2019
):
1497
1507
, https://doi.org/10.1007/s00170-019-03655-9
8.
Wang
W.
,
Wang
S.
,
Zhang
X.
,
Chen
F.
,
Xu
Y.
, and
Tian
Y.
, “
Process Parameter Optimization for Selective Laser Melting of Inconel 718 Superalloy and the Effects of Subsequent Heat Treatment on the Microstructural Evolution and Mechanical Properties
,”
Journal of Manufacturing Processes
64
(
2021
):
530
543
, https://doi.org/10.1016/j.jmapro.2021.02.004
9.
Pan
H.
,
Dahmen
T.
,
Bayat
M.
,
Lin
K.
, and
Zhang
X.
, “
Independent Effects of Laser Power and Scanning Speed on IN718’s Precipitation and Mechanical Properties Produced by LBPF Plus Heat Treatment
,”
Materials Science and Engineering A
849
(
2022
): 143530, https://doi.org/10.1016/j.msea.2022.143530
10.
Yuan
K.
,
Guo
W.
,
Li
P.
,
Wang
J.
,
Su
Y.
,
Lin
X.
, and
Li
Y.
, “
Influence of Process Parameters and Heat Treatments on the Microstructures and Dynamic Mechanical Behaviors of Inconel 718 Superalloy Manufactured by Laser Metal Deposition
,”
Materials Science and Engineering A
721
(
2018
):
215
225
, https://doi.org/10.1016/j.msea.2018.02.014
11.
Fayed
E. M.
,
Shahriari
D.
,
Saadati
M.
,
Brailovski
V.
,
Jahazi
M.
, and
Medraj
M.
, “
Influence of Homogenization and Solution Treatments Time on the Microstructure and Hardness of Inconel 718 Fabricated by Laser Powder Bed Fusion Process
,”
Materials
13
, no. 
11
(June
2020
): 2574, https://doi.org/10.3390/ma13112574
12.
Promoppatum
P.
,
Yao
S.-C.
,
Chris Pistorius
P.
, and
Rollett
A. D.
, “
A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion
,”
Engineering
3
, no. 
5
(October
2017
):
685
694
, https://doi.org/10.1016/J.ENG.2017.05.023
13.
Heat Treatment Wrought Nickel Alloy and Cobalt Alloy Parts
, AMS2774E (Warrendale, PA:
SAE International
,
2016
).
14.
Gao
Y.
,
Zhang
D.
,
Cao
M.
,
Chen
R.
,
Feng
Z.
,
Poprawe
R.
,
Schleifenbaum
J. H.
, and
Ziegler
S.
, “
Effect of δ Phase on High Temperature Mechanical Performances of Inconel 718 Fabricated with SLM Process
,”
Materials Science and Engineering A
767
(
2019
): 138327, https://doi.org/10.1016/j.msea.2019.138327
15.
Babamiri
B. B.
,
Indeck
J.
,
Demeneghi
G.
,
Cuadra
J.
, and
Hazeli
K.
, “
Quantification of Porosity and Microstructure and Their Effect on Quasi-static and Dynamic Behavior of Additively Manufactured Inconel 718
,”
Additive Manufacturing
34
(
2020
): 101380, https://doi.org/10.1016/j.addma.2020.101380
16.
Promoppatum
P.
and
Yao
S. C.
, “
Analytical Evaluation of Defect Generation for Selective Laser Melting of Metals
,”
International Journal of Advanced Manufacturing Technology
103
(
2020
):
1185
1198
, https://doi.org/10.1007/s00170-019-03500-z
17.
Kantzos
C.
,
Pauza
J.
,
Cunningham
R.
,
Narra
S. P.
,
Beuth
J.
, and
Rollett
A. D.
, “
An Investigation of Process Parameter Modifications on Additively Manufactured Inconel 718 Parts
,”
Journal of Materials Engineering and Performance
28
, no. 
2
(February
2019
):
620
626
, https://doi.org/10.1007/s11665-018-3612-3
18.
Zhao
R.
,
Zhao
Z.
,
Bai
P.
,
Du
W.
,
Zhang
L.
, and
Qu
H.
, “
Effect of Heat Treatment on the Microstructure and Properties of Inconel 718 Alloy Fabricated by Selective Laser Melting
,”
Journal of Materials Engineering and Performance
31
, no. 
1
(January
2022
):
353
364
, https:/doi.org/10.1007/s11665-021-06212-2
19.
Xu
Y.
,
Gong
Y.
,
Li
P.
,
Yang
Y.
, and
Qi
Y.
, “
The Effect of Laser Power on the Microstructure and Wear Performance of IN718 Superalloy Fabricated by Laser Additive Manufacturing
,”
International Journal of Advanced Manufacturing Technology
108
, nos.
7–8
(June
2020
):
2245
2254
, https://doi.org/10.1007/s00170-020-05172-6
20.
Karimi
P.
,
Sadeghi
E.
,
Ålgårdh
J.
,
Harlin
P.
, and
Andersson
J.
, “
Effect of Build Location on Microstructural Characteristics and Corrosion Behavior of EB-PBF Built Alloy 718
,”
International Journal of Advanced Manufacturing Technology
106
, nos.
7–8
(February
2020
):
3597
3607
, https://doi.org/10.1007/s00170-019-04859-9
21.
Jiang
R.
,
Mostafaei
A.
,
Wu
Z.
,
Choi
A.
,
Guan
P.-W.
,
Chmielus
M.
, and
Rollett
A. D.
, “
Effect of Heat Treatment on Microstructural Evolution and Hardness Homogeneity in Laser Powder Bed Fusion of Alloy 718
,”
Additive Manufacturing
35
(
2020
): 101282, https://doi.org/10.1016/j.addma.2020.101282
22.
Rosenthal
S.
,
Platt
S.
,
Hölker-Jäger
R.
,
Gies
S.
,
Kleszczynski
S.
,
Tekkaya
A. E.
, and
Witt
G.
, “
Forming Properties of Additively Manufactured Monolithic Hastelloy X Sheets
,”
Materials Science and Engineering A
753
(
2019
):
300
316
, https://doi.org/10.1016/j.msea.2019.03.035
23.
Esmaeilizadeh
R.
,
Keshavarzkermani
A.
,
Ali
U.
,
Behravesh
B.
,
Bonakdar
A.
,
Jahed
H.
, and
Toyserkani
E.
, “
On the Effect of Laser Powder-Bed Fusion Process Parameters on Quasi-static and Fatigue Behaviour of Hastelloy X: A Microstructure/Defect Interaction Study
,”
Additive Manufacturing
38
(
2021
): 101805, https://doi.org/10.1016/j.addma.2020.101805
24.
Benzing
J. T.
,
Derimow
N.
,
Kafka
O. L.
,
Hrabe
N.
,
Schumacher
P.
,
Godfrey
D.
,
Beamer
C.
, et al., “
Enhanced Strength of Additively Manufactured Inconel 718 by Means of a Simplified Heat Treatment Strategy
,”
Journal of Materials Processing Technology
322
(
2023
): 118197, https://doi.org/10.1016/j.jmatprotec.2023.118197
25.
Yang
H.
,
Wang
Z.
,
Wang
H.
,
Wu
Y.
, and
Wang
H.
, “
Microstructure, Mechanical Property and Heat Treatment Schedule of the Inconel 718 Manufactured by Low and High Power Laser Powder Bed Fusion
,”
Materials Science and Engineering A
863
(
2023
): 144517, https://doi.org/10.1016/j.msea.2022.144517
26.
Kumnorkaew
T.
,
Lian
J.
,
Uthaisangsuk
V.
,
Zhang
J.
, and
Bleck
W.
, “
Low Carbon Bainitic Steel Processed by Ausforming: Heterogeneous Microstructure and Mechanical Properties
,”
Materials Characterization
194
(
2022
): 112466, https://doi.org/10.1016/j.matchar.2022.112466
27.
Lu
Y.
,
Wu
S.
,
Gan
Y.
,
Huang
T.
,
Yang
C.
,
Junjie
L.
, and
Lin
J.
, “
Study on the Microstructure, Mechanical Property and Residual Stress of SLM Inconel-718 Alloy Manufactured by Differing Island Scanning Strategy
,”
Optics & Laser Technology
75
(
2015
):
197
206
, https://doi.org/10.1016/j.optlastec.2015.07.009
28.
Wu
H.
,
Li
C.
,
Fang
K.
,
Zhang
W.
,
Xue
F.
,
Zhang
G.
, and
Wang
X.
, “
Effect of Residual Stress on the Stress Corrosion Cracking in Boiling Magnesium Chloride Solution of Austenite Stainless Steel
,”
Materials and Corrosion
69
, no. 
11
(November
2018
):
1572
1583
, https://doi.org/10.1002/maco.201810201
29.
Chi
J.
,
Cai
Z.
,
Wan
Z.
,
Zhang
H.
,
Chen
Z.
,
Li
L.
,
Li
Y.
,
Peng
P.
, and
Guo
W.
, “
Effects of Heat Treatment Combined with Laser Shock Peening on Wire and Arc Additive Manufactured Ti17 Titanium Alloy: Microstructures, Residual Stress and Mechanical Properties
,”
Surface and Coatings Technology
396
(
2020
): 125908, https://doi.org/10.1016/j.surfcoat.2020.125908
30.
Zhang
S.
,
Lin
X.
,
Wang
L.
,
Yu
X.
,
Hu
Y.
,
Yang
H.
,
Lei
L.
, and
Huang
W.
, “
Strengthening Mechanisms in Selective Laser-Melted Inconel718 Superalloy
,”
Materials Science and Engineering A
812
(
2021
): 141145, https://doi.org/10.1016/j.msea.2021.141145
31.
Calandri
M.
,
Manfredi
D.
,
Calignano
F.
,
Ambrosio
E. P.
,
Biamino
S.
,
Lupoi
R.
, and
Ugues
D.
, “
Solution Treatment Study of Inconel 718 Produced by SLM Additive Technique in View of the Oxidation Resistance
,”
Advanced Engineering Materials
20
, no. 
11
(November
2018
): 1800351, https://doi.org/10.1002/adem.201800351
32.
Zhou
F.
,
Hu
X.
,
Zhou
Y.
,
Xu
Z.
,
Guo
C.
,
Li
G.
,
Li
Z.
,
Huang
Y.
, and
Zhu
Q.
, “
Effects of Post-heat Treatment on Anisotropic Mechanical Properties of Laser Additively Manufactured IN718
,”
Materials Science and Engineering A
877
(
2023
): 145144, https://doi.org/10.1016/j.msea.2023.145144
33.
Le
W.
,
Chen
Z.
,
Yan
K.
,
Naseem
S.
,
Zhao
Y.
,
Zhang
H.
, and
Zhang
Z.
, “
Early Evolution of δ Phase and Coarse γ´´ Phase in Inconel 718 Alloy with High Temperature Ageing
,”
Materials Characterization
180
(
2021
): 111403, https://doi.org/10.1016/j.matchar.2021.111403
This content is only available via PDF.
You do not currently have access to this content.