Abstract

The effects of hot rolling temperature and subsequent cooling at different cooling rates on the microstructure, texture, and mechanical properties of α + β titanium alloy Ti-6Al-4V were studied using a battery of structural and mechanical characterization tools. To this end, Ti-6Al-4V samples were subjected to a rolling reduction of 50 % below the β-transus (750°C and 850°C) and near the β-transus (950°C) temperature followed by water quenching and air cooling. Detailed electron back scatter diffraction provided information on the fraction, morphology, and orientation of the alpha and β-phases for different processing conditions and bulk texture analysis provided information on the orientation relationship at the macroscale. Mechanical properties, like hardness and modulus, were determined at different length scales using the Vickers microhardness experiment, instrumented microindentation, and nanoindentation. Hot rolling at sub β-transus temperatures (750°C and 850°C) leads to the equiaxed morphology of the α-phase and the absence of a Burgers orientation relationship (BOR) with the β-phase, whereas near the β-transus, hot rolling leads to the multi-variant lamellar morphology of the α-phase and a strong BOR with the β-phase for both the cooling conditions. Hot rolling at 850°C followed by water quenching showed an optimum combination of indentation hardness and modulus. This has been primarily attributed to the relatively low kernel average misorientation of the basal-prism-oriented grains compared with the prism-pyramidal oriented grains after indentation. The basal oriented grains are both elastically and plastically harder compared with the prism-oriented grains that are elastically soft but plastically hard. The orientation specific indentation hardness property is reflected in the microhardness property for sub β-transus deformed samples. A clear processing-microstructure-texture-mechanical property paradigm in the context of variant selection and distinct cooling rates for hot rolling of Ti-6Al-4V is established.

References

1.
Lütjering
G.
and
Williams
J. C.
,
Titanium
, 2nd ed. (
Berlin, Germany
:
Springer
,
2007
).
2.
Lütjering
G.
, “
Influence of Processing on Microstructure and Mechanical Properties of (α+β) Titanium Alloys
,”
Materials Science and Engineering A
243
, nos.
1–2
(March
1998
):
32
45
, https://doi.org/10.1016/S0921-5093(97)00778-8
3.
Donachie
M. J.
,
Titanium: A Technical Guide
, 2nd ed. (
Novelty, OH
:
ASM International
,
2000
).
4.
Leyens
C.
and
Peters
M.
,
Titanium and Titanium Alloys: Fundamentals and Applications
(
Hoboken, NJ
:
John Wiley & Sons, Ltd
,
2003
).
5.
Evans
W. J.
, “
Optimising Mechanical Properties in Alpha+Beta Titanium Alloys
,”
Materials Science and Engineering: A
243
, nos.
1–2
(March
1998
):
89
96
, https://doi.org/10.1016/S0921-5093(97)00784-3
6.
Sargent
G. A.
,
Kinsel
K. T.
,
Pilchak
A. L.
,
Salem
A. A.
, and
Semiatin
S. L.
, “
Variant Selection during Cooling after Beta Annealing of Ti-6Al-4V Ingot Material
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Material Science
43
, no. 
10
(October
2012
):
3570
3585
, https://doi.org/10.1007/s11661-012-1245-y
7.
Gey
N.
,
Humbert
M.
,
Philippe
M. J.
, and
Combres
Y.
, “
Investigation of the α- and β- Texture Evolution of Hot Rolled Ti-64 Products
,”
Materials Science and Engineering: A
219
, nos.
1–2
(November
1996
):
80
88
, https://doi.org/10.1016/S0921-5093(96)10388-9
8.
Gey
N.
,
Humbert
M.
,
Philippe
M. J.
, and
Combres
Y.
, “
Modeling the Transformation Texture of Ti-64 Sheets after Rolling in the β-Field
,”
Materials Science and Engineering: A
230
, nos.
1–2
(July
1997
):
68
74
, https://doi.org/10.1016/S0921-5093(97)80111-6
9.
Fan
Y.
,
Tian
W.
,
Guo
Y.
,
Sun
Z.
, and
Xu
J.
, “
Relationships among the Microstructure, Mechanical Properties, and Fatigue Behavior in Thin Ti-6Al-4V
,”
Advances in Materials Science and Engineering
2016
, no. 
1
(
2016
): 7278267, https://doi.org/10.1155/2016/7278267
10.
Gil
F. J.
,
Ginebra
M. P.
,
Manero
J. M.
, and
Planell
J. A.
, “
Formation of α-Widmanstätten Structure: Effects of Grain Size and Cooling Rate on the Widmanstätten Morphologies and on the Mechanical Properties in Ti-6Al-4V Alloys
,”
Journal of Alloys and Compounds
329
, nos. 
1–2
(November
2001
):
142
152
, https://doi.org/10.1016/S0925-8388(01)01571-7
11.
Hardie
D.
and
Ouyang
S.
, “
Effect of Microstructure and Heat Treatment on Fracture Behaviour of Smooth and Precracked Tensile Specimens of Ti-6Al-4V
,”
Materials Science and Technology
15
, no. 
9
(September
1999
):
1049
1057
, https://doi.org/10.1179/026708399101506779
12.
Filip
R.
,
Kubiak
K.
,
Ziaja
W.
, and
Sieniawski
J.
, “
The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys
,”
Journal of Materials Processing Technology
133
, nos. 
1–2
(February
2003
):
84
89
, https://doi.org/10.1016/S0924-0136(02)00248-0
13.
Semiatin
S. L.
,
Seetharaman
V.
, and
Weiss
I.
, “
Flow Behavior and Globularization Kinetics during Hot Working of Ti-6Al-4V with a Colony Alpha Microstructure
,”
Materials Science and Engineering: A
263
, no. 
2
(May
1999
):
257
271
, https://doi.org/10.1016/S0921-5093(98)01156-3
14.
Shell
E. B.
and
Semiatin
S. L.
, “
Effect of Initial Microstructure on Plastic Flow and Dynamic Globularization during Hot Working of Ti-6Al-4V
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
30
, no. 
12
(December
1999
):
3219
3229
, https://doi.org/10.1007/s11661-999-0232-4
15.
Zherebstov
S.
,
Murzinova
M.
,
Salishchev
Z.
, and
Semiatin
S. L.
, “
Spheroidization of the Lamellar Microstructure in Ti-6Al-4V Alloy during Warm Deformation and Annealing
,”
Acta Materialia
59
, no. 
10
(June
2011
):
4138
4150
, https://doi.org/10.1016/j.actamat.2011.03.037
16.
Wu
C.-B.
,
Yang
H.
,
Fan
X.-G.
, and
Sun
Z.-C.
, “
Dynamic Globularization Kinetics during Hot Working TA15 Titanium Alloy with Colony Microstructure
,”
Transactions of Nonferrous Metals Society of China
21
, no. 
9
(September
2011
):
1963
1969
, https://doi.org/10.1016/S1003-6326(11)60957-6
17.
Ma
X.
,
Zeng
W.
,
Tian
F.
, and
Zhou
Y.
, “
The Kinetics of Dynamic Globularization during Hot Working of a Two-Phase Titanium Alloy with Starting Lamellar Microstructure
,”
Materials Science and Engineering: A
548
(
2012
):
6
11
, https://doi.org/10.1016/j.msea.2012.03.022
18.
Steffanson
N.
,
Semiatin
S. L.
, and
Eylon
D.
, “
The Kinetics of Static Globularization of Ti-6Al-4V
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
33
, no. 
11
(November
2002
):
3527
3524
, https://doi.org/10.1007/s11661-002-0340-x
19.
Steffanson
N.
and
Semiatin
S. L.
, “
Mechanisms of Globularization of Ti-6Al-4V during Static Heat Treatment
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
34
, no. 
3
(March
2003
):
691
698
, https://doi.org/10.1007/s11661-003-0103-3
20.
Roy
S.
and
Suwas
S.
, “
Microstructure and Texture Evolution during Sub-Transus Thermomechanical Processing of Ti-6Al-4V-0.1B Alloy: Part I. Hot Rolling in (α+β) Phase Field
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
44
, no. 
7
(July
2013
):
3303
3321
, https://doi.org/10.1007/s11661-013-1672-4
21.
Roy
S.
,
Karanath
S.
, and
Suwas
S.
, “
Microstructure and Texture Evolution during Sub-transus Thermo-mechanical Processing of Ti-6Al-4V-0.1B Alloy: Part II. Static Annealing in (α+β) Regime
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
44
, no. 
7
(July
2013
):
3322
3336
, https://doi.org/10.1007/s11661-013-1673-3
22.
Jiang
H.
,
Dong
P.
,
Zeng
S.
, and
Wu
B.
, “
Effects of Recrystallization on Microstructure and Texture Evolution of Cold-Rolled Ti-6Al-4V Alloy
,”
Journal of Materials Engineering and Performance
25
, no. 
5
(May
2016
):
1931
1938
, https://doi.org/10.1007/s11665-016-2006-7
23.
He
D.
,
Zhu
J. C.
,
Lai
Z. H.
,
Liu
Y.
, and
Yang
X. W.
, “
An Experimental Study of Deformation Mechanism and Microstructure Evolution during Hot Deformation of Ti-6Al-2Zr-1Mo-1V Alloy
,”
Materials & Design
46
(
2013
):
38
48
, https://doi.org/10.1016/j.matdes.2012.09.045
24.
Zhang
J.
,
Li
H.
, and
Zhan
M.
, “
Review on Globularization of Titanium Alloy with Lamellar Colony
,”
Manufacturing Review
7
, no. 18 (
2020
): 14, https://doi.org/10.1051/mfreview/2020015
25.
Park
C. H.
,
Won
J. W.
,
Park
J.-W.
,
Semiatin
S. L.
, and
Lee
C. S.
, “
Mechanisms and Kinetics of Static Spheroidization of Hot-Worked Ti-6Al-2Sn-4Zr-2Mo-0.1Si with a Lamellar Microstructure
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
43
, no. 
3
(March
2012
):
977
985
, https://doi.org/10.1007/s11661-011-1019-y
26.
Pilehva
F.
,
Zharei-Hanzaki
A.
,
Moemeni
S.
, and
Khalesian
A. R.
, “
High-Temperature Deformation Behavior of a TI-6Al-7Nb Alloy in Dual Phase (α+β) and Single-Phase (β) Regions
,”
Journal of Materials Engineering and Performance
25
, no. 
1
(January
2016
):
46
58
, https://doi.org/10.1007/s11665-015-1813-6
27.
Zhang
J.
,
Li
H.
, and
Zhan
M.
, “
Review on Globularization of Titanium Alloy with Lamellar Colony
,”
Manufacturing Review
7
(
2020
): 18, https://doi.org/10.1051/mfreview/2020015
28.
Roy
S.
and
Suwas
S.
, “
The Influence of Temperature and Strain Rate on the Deformation Response and Microstructural Evolution during Hot Compression of a Titanium Alloy Ti-6Al-4V-0.1B
,”
Journal of Alloys and Compounds
548
(
2013
):
110
125
, https://doi.org/10.1016/j.jallcom.2012.08.123
29.
Prasad
Y. V. R. K.
and
Seshacharyulu
T.
, “
Processing Maps for Hot Working of Titanium Alloys
,”
Materials Science and Engineering: A
243
, nos.
1–2
(March
1998
):
82
88
, https://doi.org/10.1016/S0921-5093(97)00782-X
30.
Seshacharyulu
T.
,
Medeiros
S. C.
,
Frazier
W. G.
, and
Prasad
Y. V. R. K.
, “
Hot Working of Ti-6Al-4V with an Equiaxed α-β Microstructure: Materials Modelling Considerations
,”
Materials Science and Engineering: A
284
, nos.
1–2
(May
2000
):
184
194
, https://doi.org/10.1016/S0921-5093(00)00741-3
31.
Park
N.-K.
,
Yeom
J.-T.
, and
Na
Y.-S.
, “
Characterization of Deformation Stability in Hot Forging of Conventional Ti-6Al-4V Using Processing Maps
,”
Journal of Materials Processing Technology
130–131
(
2002
):
540
545
, https://doi.org/10.1016/S0924-0136(02)00801-4
32.
Bieler
T. R.
and
Semiatin
S. L.
, “
The Origins of Heterogeneous Deformation during Primary Hot Working of Ti-6Al-4V
,”
International Journal of Plasticity
18
, no. 
9
(September
2002
):
1165
1189
, https://doi.org/10.1016/S0749-6419(01)00057-2
33.
Gurao
N. P.
,
Sethuraman
S.
, and
Suwas
S.
, “
Evolution of Texture and Microstructure in Commercially Pure Titanium with Change in Strain Path during Rolling
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
44
, no. 
3
(March
2013
):
1497
1507
, https://doi.org/10.1007/s11661-012-1484-y
34.
Bozzolo
N.
,
Dewobroto
N.
,
Grosdidier
T.
, and
Wagner
F.
, “
Texture Evolution during Grain Growth in Recrystallized Commercially Pure Titanium
,”
Materials Science and Engineering: A
397
, nos. 
1–2
(April
2005
):
346
355
, https://doi.org/10.1016/j.msea.2005.02.049
35.
Humpherys
F. J.
and
Hatherly
M.
,
Recrystallisation and Related Annealing Phenomenon
, 2nd ed. (
Amsterdam, the Netherlands
:
Elsevier Science Ltd
,
2004
).
36.
Hadadzadeh
A.
,
Mokdad
F.
,
Wells
M. A.
, and
Chen
D. L.
, “
A New Grain Orientation Spread Approach to Analyze the Dynamic Recrystallization Behavior of a Cast-Homogenized Mg-Zn-Zr Alloy Using Electron Backscatter Diffraction
,”
Materials Science and Engineering: A
709
(
2018
):
285
289
, https://doi.org/10.1016/j.msea.2017.10.062
37.
Castan
C.
,
Montheillet
F.
, and
Perlade
A.
, “
Dynamic Recrystallization Mechanisms of an Fe–8 % Al Low Density Steel Under Hot Rolling Conditions
,”
Scripta Materialia
68
, no. 
6
(March
2013
):
360
364
, https://doi.org/10.1016/j.scriptamat.2012.07.037
38.
Barrabes
S. R.
,
Kassner
M. E.
,
Pérez-Prado
M. T.
, and
Evangelista
E.
, “
Geometric Dynamic Recrystallization in a α-Zirconium at Elevated Temperatures
,”
Materials Science Forum
467–470
(
2004
):
1145
1150
, https://doi.org/10.4028/www.scientific.net/MSF.467-470.1145
39.
Balachandran
S.
,
Kumar
S.
, and
Banerjee
D.
, “
On the Recrystallization of the α and β Phases in Titanium Alloys
,”
Acta Materialia
131
(
2017
):
423
434
, https://doi.org/10.1016/j.actamat.2017.04.008
40.
Lin
Y. C.
,
Tang
Y.
,
Zhang
X.-Y.
,
Chen
C.
,
Yang
H.
, and
Zhou
K.-C.
, “
Effects of Solution Temperature and Cooling Rate on Microstructure and Micro-hardness of a Hot Compressed Ti-6Al-4V Alloy
,”
Vacuum
159
(
2019
):
191
199
, https://doi.org/10.1016/j.vacuum.2018.10.035
41.
Kulakov
M.
,
Rahimi
S.
, and
Lee Semiatin
S.
, “
Effect of Deformation Heating on Microstructure Evolution during Hot Forging of Ti-6Al-4V
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
53
, no. 
2
(February
2022
):
407
419
, https://doi.org/10.1007/s11661-021-06493-1
42.
Shaikh
A.
,
Kumar
S.
,
Dawari
A.
,
Kirwai
S.
,
Patil
A.
, and
Singh
R.
, “
Effect of Temperature and Cooling Rates on the α + β Morphology of Ti-6Al-4V Alloy
,”
Procedia Structural Integrity
14
(
2019
):
782
789
, https://doi.org/10.1016/j.prostr.2019.07.056
43.
Zhao
Z. B.
,
Wang
Q. J.
,
Hu
Q. M.
,
Liu
J. R.
,
Yu
B. B.
, and
Yang
R.
, “
Effect of β (110) Texture Intensity on α-Variant Selection and Microstructure Morphology during β→α-phase Transformation in Near α Titanium Alloy
,”
Acta Materialia
126
(
2017
):
372
382
, https://doi.org/10.1016/j.actamat.2016.12.069
44.
He
D.
,
Zhu
J. C.
,
Zaefferer
S.
,
Raabe
D.
,
Liu
Y.
,
Lai
Z. L.
, and
Yang
X. W.
, “
Influences of Deformation Strain, Strain Rate and Cooling Rate on the Burgers Orientation Relationship and Variants Morphology during β→α-phase Transformation in a Near α Titanium Alloy
,”
Materials Science and Engineering: A
549
(
2012
):
20
29
, https://doi.org/10.1016/j.msea.2012.03.110
45.
Lu
S. L.
,
Todaro
C. J.
,
Sun
Y. Y.
,
Song
T.
,
Brandt
M.
, and
Qian
M.
, “
Variant Selection in Additively Manufactured Alpha-Beta Titanium Alloys
,”
Journal of Materials Science and Technology
113
(
2022
):
14
21
, https://doi.org/10.1016/j.jmst.2021.10.021
46.
Sinha
S.
,
Ghosh
A.
, and
Gurao
N. P.
, “
Effect of Initial Orientation on the Tensile Properties of Commercially Pure Titanium
,”
Philosophical Magazine
96
, no. 
15
(April,
2016
):
1485
1508
, https://doi.org/10.1080/14786435.2016.1165873
47.
Lin
Y. C.
,
Wu
Q.
,
Pang
G.-D.
,
Jiang
X.-Y.
, and
He
D.-G.
, “
Hot Tensile Deformation Mechanism and Dynamic Softening Behavior of Ti–6Al–4V Alloy with Thick Lamellar Microstructures
,”
Advanced Engineering Materials
22
, no. 
3
(March
2020
): 1901193, https://doi.org/10.1002/adem.201901193
48.
Viswanathan
G. B.
,
Lee
E.
,
Maher
D. M.
,
Banerjee
S.
, and
Fraser
H. L.
, “
Direct Observations and Analyses of Dislocation Substructures in the α-phase of an α/β Ti-alloy Formed by Nanoindentation
,”
Acta Materialia
53
, no. 
19
(November
2005
):
5101
5115
, https://doi.org/10.1016/j.actamat.2005.07.030
49.
Weaver
J. S.
and
Kalidindi
S. R.
, “
Mechanical Characterization of Ti-6Al-4V Titanium Alloy at Multiple Length Scales Using Spherical Indentation Stress-Strain Measurements
,”
Materials & Design
111
(
2016
):
463
472
, https://doi.org/10.1016/j.matdes.2016.09.016
This content is only available via PDF.
You do not currently have access to this content.