Abstract

A series of castor oil–based polyurethane (PU) with and without the incorporation of halloysite nanoclay (HNT) were prepared via conventional method using oil bath and with the aid of microwave radiation at varying temperatures. The PUs were characterized by using attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis, X-ray diffractometry, and transmission electron microscopy. The ATR-FTIR spectra of PUs indicated complete polymerization by the disappearance –NCO peak at 2,270 cm−1 with a shorter reaction time of ≈130 min by using microwave-assisted method compared to using conventional method (≈450 min) at the same reaction temperature of 55°C. Compared to pure HNT with d-spacing of ≈6.98 nm, an increment of d-spacing for HNT incorporated PUs synthesized by both conventional and microwave methods indicated the intercalation of PU chains within HNT layers. The sharper diffraction peak of castor oil–based PU with HNT synthesized by conventional method at 2θ = 11.6° compared to microwave-assisted method at 2θ = 11.9° indicated the formation of more crystalline PU nanocomposites by conventional method and modification of the surface morphology occurred with microwave radiation.

References

1.
Bhuvana
S.
and
Prabakaran
M.
, “
Synthesis and Characterisation of Polyamide/Halloysite Nanocomposites Prepared by Solution Intercalation Method
,”
Nanoscience and Nanotechnology
4
, no. 
3
(
2014
):
44
51
.
2.
Gedye
R.
,
Smith
F.
,
Westaway
K.
,
Ali
H.
,
Baldisera
L.
,
Laberge
L.
, and
Rousell
J.
, “
The Use of Microwave Ovens for Rapid Organic Synthesis
,”
Tetrahedron Letters
27
, no. 
3
(
1986
):
279
282
, https://doi.org/10.1016/S0040-4039(00)83996-9
3.
Guo
W.
,
Hensarling
R. M.
,
LeBlanc
A. L.
,
Hoff
E. A.
,
Baranek
A. D.
, and
Patton
D. L.
, “
Rapid Synthesis of Polymer Brush Surfaces via Microwave-Assisted Surface-Initiated Radical Polymerization
,”
Macromolecular Rapid Communications
33
, no. 
9
(May
2012
):
863
868
, https://doi.org/10.1002/marc.201100829
4.
Sosnik
A.
,
Gotelli
G.
, and
Abraham
G. A.
, “
Microwave-Assisted Polymer Synthesis (MAPS) as a Tool in Biomaterials Science: How New and How Powerful
,”
Progress in Polymer Science
36
, no. 
8
(August
2011
):
1050
1078
, https://doi.org/10.1016/j.progpolymsci.2010.12.001
5.
Mallakpour
S.
and
Rafiee
Z.
, “
Application of Microwave-Assisted Reactions in Step-Growth Polymerization: A Review
,”
Iranian Polymer Journal (English Edition)
17
, no. 
12
(December
2008
): 907.
6.
Shan
C. W.
,
Ghazal
M. I.
, and
Idris
M. I.
, “
Improved Vibration Characteristics of Flexible Polyurethane Foam via Composite Formation
,”
International Journal of Automotive and Mechanical Engineering
7
(
2013
):
1031
1042
.
7.
Zeltins
V.
,
Cabulis
U.
,
Abolins
A.
and
Gaidukovs
S.
, “
Microwave Synthesis of Polyols for Urethane Materials
” in
IOP Conference Series: Materials Science and Engineering, volume 111
(
Bristol, UK
:
IOP Publishing
,
2015
), 012015.
8.
Cervantes-Uc
J. M.
,
Espinosa
J. I. M.
,
Cauich-Rodríguez
J. V.
,
Ávila-Ortega
A.
,
Vázquez-Torres
H.
,
Marcos-Fernández
A.
, and
San Román
J.
, “
TGA/FTIR Studies of Segmented Aliphatic Polyurethanes and Their Nanocomposites Prepared with Commercial Montmorillonites
,”
Polymer Degradation and Stability
94
, no. 
10
(October
2009
):
1666
1677
, https://doi.org/10.1016/j.polymdegradstab.2009.06.022
9.
Bogdal
D.
and
Prociak
A.
, “
Microwave Synthesis of Polymeric Materials – Scale Up and Commercial Aspects
,”
Chemica Oggi – Chemistry Today
25
, no. 
3
(May/June
2007
):
30
33
.
10.
Coutinho
F. M. B.
and
Delpech
M. C.
, “
Degradation Profile of Films Cast from Aqueous Polyurethane Dispersions
,”
Polymer Degradation and Stability
70
, no. 
1
(
2000
):
49
57
, https://doi.org/10.1016/S0141-3910(00)00087-2
11.
Abdel Hakim
A. A.
,
Nassar
M.
,
Emam
A.
, and
Sultan
M.
, “
Preparation and Characterization of Rigid Polyurethane Foam Prepared from Sugar-Cane Bagasse Polyol
,”
Materials Chemistry and Physics
129
, nos. 
1–2
(September
2011
):
301
307
, https://doi.org/10.1016/j.matchemphys.2011.04.008
12.
Vijan
V.
,
Kaity
S.
,
Biswas
S.
,
Isaac
J.
, and
Ghosh
A.
, “
Microwave Assisted Synthesis and Characterization of Acrylamide Grafted Gellan, Application in Drug Delivery
,”
Carbohydrate Polymers
90
, no. 
1
(September
2012
):
496
506
, https://doi.org/10.1016/j.carbpol.2012.05.071
13.
Yao
K. J.
,
Song
M.
,
Hourston
D. J.
, and
Luo
D. Z.
, “
Polymer/Layered Clay Nanocomposites: 2 Polyurethane Nanocomposites
,”
Polymer
43
, no. 
3
(February
2002
):
1017
1020
, https://doi.org/10.1016/S0032-3861(01)00650-4
14.
Nishii
M.
, “
Curing of Denture Base Resins with Microwave Irradiation: With Particular Reference to Heat-Curing Resins
,”
Journal of Osaka Dental University
2
, no. 
1
(
1968
):
23
40
.
15.
Giguere
R. J.
,
Bray
T. L.
,
Duncan
S. M.
, and
Majetich
G.
, “
Application of Commercial Microwave Ovens to Organic Synthesis
,”
Tetrahedron Letters
27
, no. 
41
(
1986
):
4945
4948
, https://doi.org/10.1016/S0040-4039(00)85103-5
16.
Gunashekar
S.
and
Abu-Zahra
N.
, “
Synthesis of Functionalized Polyurethane Foam Using BES Chain Extender for Lead Ion Removal from Aqueous Solutions
,”
Journal of Cellular Plastics
51
, nos. 
5–6
(September–November
2015
):
453
470
, https://doi.org/10.1177/0021955X14559255
17.
Mishra
A.
,
Aswal
V. K.
, and
Maiti
P.
, “
Nanostructure to Microstructure Self-Assembly of Aliphatic Polyurethanes: The Effect on Mechanical Properties
,”
The Journal of Physical Chemistry B
114
, no. 
16
(April
2010
):
5292
5300
, https://doi.org/10.1021/jp100599u
18.
Biswas
A.
,
Kim
S.
,
Selling
G. W.
, and
Cheng
H. N.
, “
Microwave-Assisted Synthesis of Alkyl Cellulose in Aqueous Medium
,”
Carbohydrate Polymers
94
, no. 
1
(April
2013
):
120
123
, https://doi.org/10.1016/j.carbpol.2013.01.022
19.
Xia
L.
,
Zhang
H. Y.
,
Cao
D. W.
, and
Guo
Y. S.
, “
Study on Property of Castor Oil Based Polyurethane Modified Asphalt
,”
Journal of Highway and Transportation Research and Development
33
, no. 
10
(
2016
):
13
18
, https://doi.org/10.3969/j.issn.1002-0268.2016.10.003
20.
Xia
L.
,
Cao
D.
,
Zhang
H.
, and
Guo
Y.
, “
Study on the Classical and Rheological Properties of Castor Oil-Polyurethane Pre Polymer (C-PU) Modified Asphalt
,”
Construction and Building Materials
112
(
2016
):
949
955
, https://doi.org/10.1016/j.conbuildmat.2016.02.207
21.
Du
M.
,
Guo
B.
and
Jia
D.
, “
Newly Emerging Applications of Halloysite Nanotubes: A Review
,”
Polymer International
59
, no. 
5
(May
2010
):
574
582
, https://doi.org/10.1002/pi.2754
22.
Cheng
C.
,
Song
W.
,
Zhao
Q.
, and
Zhang
H.
, “
Halloysite Nanotubes in Polymer Science: Purification, Characterization, Modification and Applications
,”
Nanotechnology Reviews
9
, no. 
1
(January
2020
):
323
344
, https://doi.org/10.1515/ntrev-2020-0024
23.
Pourmohammadi-Mahunaki
M.
,
Haddadi-Asl
V.
,
Roghani-Mamaqani
H.
,
Koosha
M.
, and
Yazdi
M.
, “
Preparation of Polyurethane Composites Reinforced with Halloysite and Carbon Nanotubes
,”
Polymer Composites
42
, no. 
1
(October
2020
):
450
461
, https://doi.org/10.1002/pc.25838
24.
Nosrati
R.
,
Kiani
G.
,
Karimzad Ghavidel
A.
, and
Rashidi
A.
, “
Improving Environmental Protection of Waterborne Polyurethane Coating by Adding TiO2/Polyaniline/HNT/CNT Nanocomposite
,”
Environmental Science and Pollution Research
27
, no. 
6
(February
2020
):
6438
6448
, https://doi.org/10.1007/s11356-019-07333-x
25.
Mohammadzadeh
F.
,
Haddadi-Asl
V.
,
Yousefi Siavoshani
A.
, and
Salami-Kalajahi
M.
, “
Preparation of Intelligent Magnetic Halloysite Nanotubes/Polyurethane Nanocomposites: The Role of Nanotube Modification on the Shape Recovery Rate
,”
Materials Research Bulletin
147
(
2022
): 111653, https://doi.org/10.1016/j.materresbull.2021.111653
26.
Alaa
M. A.
,
Yusoh
K.
, and
Hasany
S. F.
, “
Pure Polyurethane and Castor Oil Based Polyurethane: Synthesis and Characterization
,”
Journal of Mechanical Engineering and Sciences
8
(
2015
):
1507
1515
, https://doi.org/10.15282/jmes.8.2015.25.0147
27.
Lee
Y.-H.
,
Kang
B.-K.
,
Kim
H.-D.
,
Yoo
H.-J.
,
Kim
J.-S.
,
Huh
J.-H.
,
Jung
Y.-J.
, and
Lee
D.-J.
, “
Effect of Hot Pressing/Melt Mixing on the Properties of Thermoplastic Polyurethane
,”
Macromolecular Research
17
, no. 
8
(August
2009
):
616
622
, https://doi.org/10.1007/BF03218918
28.
Cervantes-Uc
J. M.
,
Cauich-Rodríguez
J. V.
,
Vázquez-Torres
H.
,
Garfias-Mesías
L. F.
, and
Paul
D. R.
, “
Thermal Degradation of Commercially Available Organoclays Studied by TGA–FTIR
,”
Thermochimica Acta
457
, nos. 
1–2
(June
2007
):
92
102
, https://doi.org/10.1016/j.tca.2007.03.008
29.
Chandrasekaran
S.
,
Ramanathan
S.
, and
Basak
T.
, “
Microwave Food Processing—A Review
,”
Food Research International
52
, no. 
1
(June
2013
):
243
261
, https://doi.org/10.1016/j.foodres.2013.02.033
30.
Krämer
R. H.
,
Zammarano
M.
,
Linteris
G. T.
,
Gedde
U. W.
, and
Gilman
J. W.
, “
Heat Release and Structural Collapse of Flexible Polyurethane Foam
,”
Polymer Degradation and Stability
95
, no. 
6
(June
2010
):
1115
1122
, https://doi.org/10.1016/j.polymdegradstab.2010.02.019
31.
Saralegi
A.
,
Johan Foster
E.
,
Weder
C.
,
Eceiza
A.
, and
Corcuera
M. A.
, “
Thermoplastic Shape-Memory Polyurethanes Based on Natural Oils
,”
Smart Materials and Structures
23
, no. 
2
(February
2014
): 025033, https://doi.org/10.1088/0964-1726/23/2/025033
32.
Lidström
P.
,
Tierney
J.
,
Wathey
B.
, and
Westman
J.
, “
Microwave Assisted Organic Synthesis: A Review
,”
Tetrahedron
57
, no. 
45
(November
2001
):
9225
9283
, https://doi.org/10.1016/S0040-4020(01)00906-1
33.
Nguyen Dang
L.
,
Le Hoang
S.
,
Malin
M.
,
Weisser
J.
,
Walter
T.
,
Schnabelrauch
M.
, and
Seppälä
J.
, “
Synthesis and Characterization of Castor Oil-Segmented Thermoplastic Polyurethane with Controlled Mechanical Properties
,”
European Polymer Journal
81
(
2016
):
129
137
, https://doi.org/10.1016/j.eurpolymj.2016.05.024
34.
Hayes
B. L.
, “
Recent Advances in Microwave-Assisted Synthesis
,”
Aldrichimica Acta
37
, no. 
2
(January
2004
):
66
77
.
35.
Kucińska-Lipka
J.
,
Sienkiewicz
M.
,
Gubanska
I.
, and
Zalewski
S.
, “
Microwave Radiation in the Synthesis of Urethane Prepolymers
,”
European Polymer Journal
88
(
2017
):
126
135
, https://doi.org/10.1016/j.eurpolymj.2017.01.017
36.
Moorthi
R.
and
Ps
S.
, “
Experimental Investigations of Influence of Halloysite Nanotube on Mechanical and Chemical Resistance Properties of Glass Fiber Reinforced Epoxy Nano Composites
,”
Journal of Scientific & Industrial Research
74
, no. 
12
(December
2015
):
685
689
.
37.
Yilgör
I.
,
Yilgör
E.
, and
Wilkes
G. L.
, “
Critical Parameters in Designing Segmented Polyurethanes and Their Effect on Morphology and Properties: A Comprehensive Review
,”
Polymer
58
(
2015
):
A1
A36
, https://doi.org/10.1016/j.polymer.2014.12.014
38.
Ren
J.
,
Dang
K. M.
,
Pollet
E.
, and
Avérous
L.
, “
Preparation and Characterization of Thermoplastic Potato Starch/Halloysite Nano-biocomposites: Effect of Plasticizer Nature and Nanoclay Content
,”
Polymers
10
, no. 
8
(August
2018
): 808, https://doi.org/10.3390/polym10080808
39.
Ewis
D.
and
Hameed
B. H.
, “
A Review on Microwacve-Assisted Synthesis of Adsorbents and Its Application in the Removal of Water Pollutants
,”
Journal of Water Process Engineering
41
(
2021
): 102006, https://doi.org/10.1016/j.jwpe.2021.102006
40.
Flores-López
S. L.
,
Villanueva
S. F.
,
Montes-Morán
M. A.
,
Cruz
G.
,
Garrido
J. J.
, and
Arenillas
A.
, “
Advantages of Microwave-Assisted Synthesis of Silica Gels
,”
Colloids and Surfaces A: Physicochemical and Engineering Aspects
604
(
2020
): 125248, https://doi.org/10.1016/j.colsurfa.2020.125248
41.
Ravichandran
G.
,
Rathnakar
G.
, and
Santhosh
N.
, “
Effect of Heat Treated HNT on Physico-Mechanical Properties of Epoxy Nanocomposites
,”
Composites Communications
13
(
2019
):
42
46
, https://doi.org/10.1016/j.coco.2019.02.005
This content is only available via PDF.
You do not currently have access to this content.