Abstract

The steady progress in electro mobility increases the demand for lightweight space frame and engine solutions. Advanced aluminum-silicon cast alloys with additions of magnesium, copper, or both for precipitation hardening are promising candidates for lightweight structures because of their high strength-to-weight ratio. For a reliable design, the fatigue performance in the very high cycle fatigue (VHCF) regime must be understood. Therefore, this study deals with the influence of frequency on VHCF properties as well as fatigue damage evolution in AlSi7Mg and AlSi10Mg sand-cast alloys. The VHCF tests were performed using a resonant (70 Hz), a high-frequency resonant (1 kHz), and an ultrasonic (20 kHz) fatigue testing system. Thereby, a significant frequency effect could be determined that resulted in an increased fatigue lifetime by 1 decade at 1 kHz and by 2 decades at 20 kHz, whereas no significant change in fatigue limit could be determined. Moreover, the fatigue crack initiation mechanisms change from surface crack initiation at 70 Hz and 1 kHz to volume crack initiation at 20 kHz. Using the defect-based Murakami approach, including a lightweight extension of Noguchi, a defect-induced (size, location) frequency effect could be excluded. Based on damage monitoring, the effect could be related to the crack propagation phase, which is accelerated at low frequencies (<100 Hz) because of a humidity reaction with the fatigue crack surface and the formation of atomic hydrogen resulting in a saturated hydrogen embrittlement per cycle. At high frequencies of 1 kHz and 20 kHz, no saturated hydrogen embrittlement per cycle can be reached.

References

1.
Menge
M.
,
Rath
D.
, and
Zeuner
T.
, “
New Chassis Components as Aluminium Castings
,”
ATZ Worldwide
107
, no. 
3
(March
2005
):
9
10
, https://doi.org/10.1007/BF03224723
2.
Ostermann
F.
,
Anwendungstechnologie Aluminium
(
Berlin
:
Springer Vieweg
,
2014
).
3.
Davis
J. R.
, “
Aluminum and Aluminum Alloys
,” in
Alloying: Understanding the Basics
(
Materials Park, OH
:
ASM International
,
2001
),
351
416
.
4.
Robles Hernandez
F. C.
,
Herrera Ramírez
J. M.
, and
Mackay
R.
,
Al-Si Alloys: Automotive, Aeronautical, and Aerospace Applications
(
Cham, Switzerland
:
Springer International Publishing
,
2017
).
5.
Robles Hernández
F. C.
and
Sokolowski
J. H.
, “
Effects and On-line Prediction of Electromagnetic Stirring on Microstructure Refinement of the 319 Al–Si Hypoeutectic Alloy
,”
Journal of Alloys and Compounds
480
, no. 
2
(July
2009
):
416
421
, https://doi.org/10.1016/j.jallcom.2009.02.109
6.
Henry
S.
,
Minghetti
T.
, and
Rappaz
M.
, “
Dendrite Growth Morphologies in Aluminium Alloys
,”
Acta Materialia
46
, no. 
18
(November
1998
):
6431
6443
, https://doi.org/10.1016/S1359-6454(98)00308-5
7.
Guinier
A.
, “
La diffraction des rayons X aux très petits angles: Application à l’étude de phénomènes ultramicroscopiques
” (in French),
Annalen der Physik
11
, no. 
12
(September
1939
):
161
237
, https://doi.org/10.1051/anphys/193911120161
8.
Preston
G. D.
, “
The Diffraction of X-rays by an Age-Hardening Alloy of Aluminium and Copper. The Structure of an Intermediate Phase
,”
The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science
26
, no. 
178
(November
1938
):
855
871
, https://doi.org/10.1080/14786443808562177
9.
Vissers
R.
,
van Huis
M. A.
,
Jansen
J.
,
Zandbergen
H. W.
,
Marioara
C. D.
, and
Andersen
S. J.
, “
The Crystal Structure of the β′ Phase in Al–Mg–Si Alloys
,”
Acta Materialia
55
, no. 
11
(June
2007
):
3815
3823
, https://doi.org/10.1016/j.actamat.2007.02.032
10.
Wang
Q. G.
, “
Plastic Deformation Behavior of Aluminum Casting Alloys A356/357
,”
Metallurgical and Materials Transactions A
35
, no. 
9
(September
2004
):
2707
2718
, https://doi.org/10.1007/s11661-004-0216-3
11.
Caceres
C. H.
and
Griffiths
J. R.
, “
Damage by the Cracking of Silicon Particles in an Al-7Si-0.4Mg Casting Alloy
,”
Acta Materialia
44
, no. 
1
(January
1996
):
25
33
, https://doi.org/10.1016/1359-6454(95)00172-8
12.
Caceres
C. H.
,
Griffiths
J. R.
, and
Reiner
P.
, “
The Influence of Microstructure on the Bauschinger Effect in an Al-Si-Mg Casting Alloy
,”
Acta Materialia
44
, no. 
1
(January
1996
):
15
23
, https://doi.org/10.1016/1359-6454(95)00171-6
13.
Kammer
C.
,
Aluminium Taschenbuch 1: Grundlagen und Werkstoffe
, 16th ed., vol. 1 (Düsseldorf, Germany:
Aluminium-Verlag
,
2002
).
14.
Wang
Q.
,
Apelian
D.
, and
Lados
D.
, “
Fatigue Behavior of A356-T6 Aluminum Cast Alloys. Part I. Effect of Casting Defects
,”
Journal of Light Metals
1
, no. 
1
(February
2001
):
73
84
, https://doi.org/10.1016/S1471-5317(00)00008-0
15.
Wang
Q. G.
,
Crepeau
P. N.
,
Davidson
C. J.
, and
Griffiths
J. R.
, “
Oxide Films, Pores and the Fatigue Lives of Cast Aluminum Alloys
,”
Metallurgical and Materials Transactions B
37
, no. 
6
(December
2006
):
887
895
, https://doi.org/10.1007/BF02735010
16.
Yi
J. Z.
,
Gao
Y. X.
,
Lee
P. D.
, and
Lindley
T. C.
, “
Microstructure-Based Fatigue Life Prediction for Cast A356-T6 Aluminum-Silicon Alloys
,”
Metallurgical and Materials Transactions B
37
, no. 
2
(April
2006
):
301
311
, https://doi.org/10.1007/BF02693159
17.
Yi
J. Z.
,
Zhu
X.
,
Jones
J. W.
, and
Allison
J. E.
, “
A Probabilistic Model of Fatigue Strength Controlled by Porosity Population in a 319-Type Cast Aluminum Alloy: Part II. Monte-Carlo Simulation
,”
Metallurgical and Materials Transactions A
38
, no. 
5
(May
2007
):
1123
1135
, https://doi.org/10.1007/s11661-006-9069-2
18.
Aigner
R.
,
Pomberger
S.
,
Leitner
M.
, and
Stoschka
M.
, “
On the Statistical Size Effect of Cast Aluminium
,”
Materials
12
, no. 
10
(May
2019
): 1578, https://doi.org/10.3390/ma12101578
19.
Aigner
R.
,
Leitner
M.
, and
Stoschka
M.
, “
Fatigue Strength Characterization of Al-Si Cast Material Incorporating Statistical Size Effect
,”
MATEC Web of Conferences
165
(
2018
): 14002, https://doi.org/10.1051/matecconf/201816514002
20.
Aigner
R.
,
Pusterhofer
S.
,
Pomberger
S.
,
Leitner
M.
, and
Stoschka
M.
, “
A Probabilistic Kitagawa-Takahashi Diagram for Fatigue Strength Assessment of Cast Aluminium Alloys
,”
Materials Science and Engineering: A
745
(February
2019
):
326
334
, https://doi.org/10.1016/j.msea.2018.12.108
21.
Garb
C.
,
Leitner
M.
, and
Grün
F.
, “
Fatigue Strength Assessment of AlSi7Cu0.5Mg T6W Castings Supported by Computed Tomography Microporosity Analysis
,”
Procedia Engineering
160
(
2016
):
53
60
, https://doi.org/10.1016/j.proeng.2016.08.862
22.
Garb
C.
,
Leitner
M.
, and
Grün
F.
, “
Application of √Area-Concept to Assess Fatigue Strength of AlSi7Cu0.5Mg Casted Components
,”
Engineering Fracture Mechanics
185
(November
2017
):
61
71
, https://doi.org/10.1016/j.engfracmech.2017.03.018
23.
Le
V.-D.
,
Morel
F.
,
Bellett
D.
,
Saintier
N.
, and
Osmond
P.
, “
Multiaxial High Cycle Fatigue Damage Mechanisms Associated with the Different Microstructural Heterogeneities of Cast Aluminium Alloys
,”
Materials Science and Engineering: A
649
(January
2016
):
426
440
, https://doi.org/10.1016/j.msea.2015.10.026
24.
El Khoukhi
D.
,
Morel
F.
,
Saintier
N.
,
Bellett
D.
,
Osmond
P.
,
Le
V.-D.
, and
Adrien
J.
, “
Experimental Investigation of the Size Effect in High Cycle Fatigue: Role of the Defect Population in Cast Aluminium Alloys
,”
International Journal of Fatigue
129
(December
2019
): 105222, https://doi.org/10.1016/j.ijfatigue.2019.105222
25.
Serrano Munoz
I.
, “
Influence of Casting Defects on the Fatigue Behaviour of an A357-T6 Aerospace Alloy
” (PhD diss.,
Universität Lyon, Lyon
,
2014
).
26.
Buffière
J.-Y.
,
Savelli
S.
,
Jouneau
P. H.
,
Maire
E.
, and
Fougères
R.
, “
Experimental Study of Porosity and Its Relation to Fatigue Mechanisms of Model Al–Si7–Mg0.3 Cast Al Alloys
,”
Materials Science and Engineering: A
316
, nos. 
1–2
(November
2001
):
115
126
, https://doi.org/10.1016/S0921-5093(01)01225-4
27.
Boileau
J. M.
and
Allison
J. E.
, “
The Effect of Porosity Size on the Fatigue Properties in a Cast 319 Aluminum Alloy
,” in SAE 2001 World Congress (
Detroit, MI
:
SAE International
,
2001
),
648
659
, https://doi.org/10.4271/2001-01-0818
28.
Boileau
J. M.
,
Zindel
J. W.
, and
Allison
J. E.
, “
The Effect of Solidification Time on the Mechanical Properties in a Cast A356-T6 Aluminum Alloy
,” in International Congress & Exposition (
Detroit, MI
:
SAE International
,
1997
),
63
74
, https://doi.org/10.4271/970019
29.
Couper
M. J.
,
Neeson
A. E.
, and
Griffiths
J. R.
, “
Casting Defects and the Fatigue Behaviour of an Aluminium Casting Alloy
,”
Fatigue & Fracture of Engineering Materials & Structures
13
, no. 
3
(May
1990
):
213
227
, https://doi.org/10.1111/j.1460-2695.1990.tb00594.x
30.
Roy
M.
,
Nadot
Y.
,
Maijer
D. M.
, and
Benoit
G.
, “
Multiaxial Fatigue Behaviour of A356-T6
,”
Fatigue & Fracture of Engineering Materials & Structures
35
, no. 
12
(December
2012
):
1148
1159
, https://doi.org/10.1111/j.1460-2695.2012.01702.x
31.
Roy
M. J.
,
Nadot
Y.
,
Nadot-Martin
C.
,
Bardin
P.-G.
, and
Maijer
D. M.
, “
Multiaxial Kitagawa Analysis of A356-T6
,”
International Journal of Fatigue
33
, no. 
6
(June
2011
):
823
832
, https://doi.org/10.1016/j.ijfatigue.2010.12.011
32.
Serrano-Munoz
I.
,
Buffiere
J.-Y.
,
Verdu
C.
,
Gaillard
Y.
,
Mu
P.
, and
Nadot
Y.
, “
Influence of Surface and Internal Casting Defects on the Fatigue Behaviour of A357-T6 Cast Aluminium Alloy
,”
International Journal of Fatigue
82
, Part 
3
(January
2016
):
361
370
, https://doi.org/10.1016/j.ijfatigue.2015.07.032
33.
Wang
Q.
,
Apelian
D.
, and
Lados
D. A.
, “
Fatigue Behavior of A356/357 Aluminum Cast Alloys. Part II - Effect of Microstructural Constituents
,”
Journal of Light Metals
1
, no. 
1
(February
2001
):
85
97
, https://doi.org/10.1016/S1471-5317(00)00009-2
34.
Siegfanz
S.
,
Giertler
A.
,
Michels
W.
, and
Krupp
U.
, “
Influence of the Microstructure on the Fatigue Damage Behaviour of the Aluminium Cast Alloy AlSi7Mg0.3
,”
Materials Science and Engineering: A
565
(March
2013
):
21
26
, https://doi.org/10.1016/j.msea.2012.12.047
35.
Krupp
U.
,
Giertler
A.
,
Siegfanz
S.
, and
Michels
W.
, “
Mutual Interaction between Fatigue Crack Initiation/Propagation and Microstructural Features in Cast Aluminum Alloys
,” in
11th International Fatigue Congress
, eds.
Clark
G.
and
Wang
C. H.
(
Zurich, Switzerland
:
Trans Tech Publications
,
2014
),
488
493
.
36.
Gerbe
S.
,
Krupp
U.
, and
Michels
W.
, “
Influence of Secondary Dendrite Arm Spacing (SDAS) on the Fatigue Properties of Different Conventional Automotive Aluminum Cast Alloys
,”
Fracture and Structural Integrity
13
, no. 
48
(April
2019
):
105
115
, https://doi.org/10.3221/IGF-ESIS.48.13
37.
Yi
J. Z.
,
Gao
Y. X.
,
Lee
P. D.
, and
Lindley
T. C.
, “
Effect of Fe-Content on Fatigue Crack Initiation and Propagation in a Cast Aluminum–Silicon Alloy (A356–T6)
,”
Materials Science and Engineering: A
386
, nos. 
1–2
(November
2004
):
396
407
, https://doi.org/10.1016/j.msea.2004.07.044
38.
Ueno
A.
,
Miyakawa
S.
,
Yamada
K.
, and
Sugiyama
T.
, “
Fatigue Behavior of Die Casting Aluminum Alloys in Air and Vacuum
,”
Procedia Engineering
2
, no. 
1
(April
2010
):
1937
1943
, https://doi.org/10.1016/j.proeng.2010.03.208
39.
Engler-Pinto
C. C.
 Jr.
,
Frisch
R. J.
 Sr.
,
Lasecki
J. V.
,
Mayer
H.
, and
Allison
J. E.
, “
Effect of Frequency and Environment on High Cycle Fatigue of Cast Aluminum Alloys
,” in
Fourth International Conference on Very High Cycle Fatigue
, eds.
Allison
J. E.
,
Wayne Jones
J.
,
Larsen
J. M.
, and
Ritchie
R. O.
(
Hoboken, NJ
:
Wiley
,
2007
),
421
428
.
40.
Li
W. K.
,
Cao
H. T.
,
Wen
W. D.
,
Engler-Pinto
C.
, and
Su
X. M.
, “
Effect of Humidity on the Very High Cycle Fatigue Behavior of a Cast Aluminum Alloy
,”
SAE International Journal of Materials and Manufacturing
9
, no. 
3
(April
2016
):
578
584
, https://doi.org/10.4271/2016-01-0371
41.
Eichlseder
W.
, “
Lebensdauervorhersage auf Basis von Finite Elemente Ergebnissen
,”
Materials Science & Engineering Technology
34
, no. 
9
(September
2003
):
843
849
, https://doi.org/10.1002/mawe.200300665
42.
Redik
S.
,
Guster
C.
, and
Eichlseder
W.
, “
Bruchmechanische Lebensdauerbewertung von Aluminiumgussbauteilen mit Hilfe eines erweiterten Kitagawa-Diagramms
,”
BHM Berg- und Hüttenmännische Monatshefte
156
, no. 
7
(July
2011
):
275
280
, https://doi.org/10.1007/s00501-011-0007-2
43.
Campbell
J.
,
The New Metallurgy of Cast Metals: Castings
, 2nd ed. (
Oxford
:
Butterworth-Heinemann
,
2003
).
44.
Murakami
Y.
and
Endo
M.
, “
Effects of Hardness and Crack Geometries on ΔKth of Small Crack Emanting from Small Defects
,” in
The Behaviour of Short Fatigue Cracks
, eds.
Miller
K. J.
and
de los Rios
E. R.
(
London
:
Mechanical Engineering Publications
,
1986
),
275
294
.
45.
Noguchi
H.
,
Morishige
K.
,
Fujii
T.
,
Kawazoe
T.
, and
Hamada
S.
, “
Proposal of Method for Estimation Stress Intensity Factor Range on Small Crack for Light Metals
” (in Japanese), in
Proceedings of the 56th JSMS Annual Meetings
, eds.
Ueno
A.
and
Takahashi
J.
(
Nagoya, Japan
:
JSMS
,
2007
),
137
138
.
46.
Li
P.
,
Siviour
C. R.
, and
Petrinic
N.
, “
The Effect of Strain Rate, Specimen Geometry and Lubrication on Responses of Aluminium AA2024 in Uniaxial Compression Experiments
,”
Experimental Mechanics
49
, no. 
4
(August
2009
):
587
593
, https://doi.org/10.1007/s11340-008-9129-1
47.
Krewerth
D.
,
Weidner
A.
, and
Biermann
H.
, “
Application of In Situ Thermography for Evaluating the High-Cycle and Very High-Cycle Fatigue Behaviour of Cast Aluminium Alloy AlSi7Mg (T6)
,”
Ultrasonics
53
, no. 
8
(December
2013
):
1441
1449
, https://doi.org/10.1016/j.ultras.2013.03.001
48.
Zhu
X. X.
, “
Ultrasonic Fatigue of E319 Cast Aluminum Alloy in the Long Lifetime Regime
” (PhD diss.,
University of Michigan
,
2007
).
49.
Holper
B.
,
Mayer
H.
,
Vasudevan
A. K.
, and
Stanzl-Tschegg
S. E.
, “
Near Threshold Fatigue Crack Growth in Aluminium Alloys at Low and Ultrasonic Frequency: Influences of Specimen Thickness, Strain Rate, Slip Behaviour and Air Humidity
,”
International Journal of Fatigue
25
, no. 
5
(May
2003
):
397
411
, https://doi.org/10.1016/S0142-1123(02)00163-9
50.
Zhu
X.
,
Jones
J. W.
, and
Allison
J. E.
, “
Effect of Frequency, Environment, and Temperature on Fatigue Behavior of E319 Cast-Aluminum Alloy: Small-Crack Propagation
,”
Metallurgical and Materials Transactions A
39
, no. 
11
(November
2008
):
2666
2680
, https://doi.org/10.1007/s11661-008-9630-2
51.
Wei
R. P.
, “
Environmental Considerations for Fatigue Cracking
,”
Fatigue & Fracture of Engineering Materials and Structures
25
, nos. 
8–9
(September
2002
):
845
854
, https://doi.org/10.1046/j.1460-2695.2002.00551.x
52.
Pelloux
R. M. N.
, “
Mechanism of Formation of Ductile Fatigue Striations
,”
Transactions of the American Society of Mechanical Engineers
62
(
1969
):
281
285
.
53.
Christ
H.-J.
,
Wechselverformung von Metallen: Zyklisches Spannungs-Dehnungs-Verhalten und Mikrostruktur
(in German) (Berlin:
Springer-Verlag
,
1991
).
54.
Tenkamp
J.
,
Blinn
B.
,
Beck
T.
, and
Walther
F.
, “
Microstructure- and Plasticity-Based Fatigue and Defect Tolerance Assessment of Age-Hardenable Al-Si Cast Alloys in LCF and HCF Regime
,”
International Journal of Fatigue
166
(January
2023
): 107240, https://doi.org/10.1016/j.ijfatigue.2022.107240
55.
Kumar
A.
,
Torbet
C. J.
,
Pollock
T. M.
, and
Wayne Jones
J.
, “
In Situ Characterization of Fatigue Damage Evolution in a Cast Al Alloy via Nonlinear Ultrasonic Measurements
,”
Acta Materialia
58
, no. 
6
(April
2010
):
2143
2154
, https://doi.org/10.1016/j.actamat.2009.11.055
56.
Landgraf
R. W.
,
Morrow
J. D.
, and
Endo
T.
, “
Determination of the Cyclic Stress-Strain Curve
,”
Journal of Materials
4
, no. 
1
(
1969
):
176
188
.
57.
Lados
D. A.
, “
Fatigue Crack Growth Mechanisms in Al-Si-Mg Alloys
,”
Surface Engineering
20
, no. 
6
:
416
424
, https://doi.org/10.1179/sur.2004.20.6.416
58.
Petit
J.
and
Henaff
C.
, “
Stage II Intrinsic Fatigue Crack Propagation
,”
Scripta Metallurgica et Materialia
25
, no. 
12
(December
1991
):
2683
2687
, https://doi.org/10.1016/0956-716X(91)90139-R
59.
Petit
J.
and
Sarrazin-Baudoux
C.
, “
Some Critical Aspects of Low Rate Fatigue Crack Propagation in Metallic Materials
,”
International Journal of Fatigue
32
, no. 
6
(June
2010
):
962
970
, https://doi.org/10.1016/j.ijfatigue.2009.10.013
60.
Künkler
B.
,
Düber
O.
,
Köster
P.
,
Krupp
U.
,
Fritzen
C.-P.
, and
Christ
H.-J.
, “
Modelling of Short Crack Propagation – Transition from Stage I to Stage II
,”
Engineering Fracture Mechanics
75
, nos. 
3–4
(February–March
2008
):
715
725
, https://doi.org/10.1016/j.engfracmech.2007.02.018
61.
Tenkamp
J.
,
Koch
A.
,
Knorre
S.
,
Krupp
U.
,
Michels
W.
, and
Walther
F.
, “
Defect-Correlated Fatigue Assessment of A356-T6 Aluminum Cast Alloy Using Computed Tomography Based Kitagawa-Takahashi Diagrams
,”
International Journal of Fatigue
108
(March
2018
):
25
34
, https://doi.org/10.1016/j.ijfatigue.2017.11.003
This content is only available via PDF.
You do not currently have access to this content.