Abstract

Fatigue data sheets of the National Institute for Materials Science disclose the results of gigacycle fatigue tests conducted on wrought aluminum alloys. The materials tested were hot-rolled plates and extruded round bars of A5083P-O (two heats), A7075-T6 (three heats), and A6061-T6 (three heats). The fatigue testing methods were rotating-bending at 100 Hz, ultrasonic at 20 kHz, and uniaxial at 100 Hz. The rotating-bending fatigue tests were conducted for 3 years to reach 1010 cycles. The ultrasonic and uniaxial fatigue tests were also conducted at high stress ratios. This study analyzed the fatigue life data, clarifying frequency effects, presence or absence of fatigue limits, and stress ratio effects. The three types of fatigue tests revealed equivalent results, meaning that frequency effects and stress gradient effects were negligible in the wrought aluminum alloys. Frequency effects were visible in several cast aluminum alloys owing to the influence of humidity, but the wrought aluminum alloys were observed to be insensitive to humidity. Many specimens were fractured at >107 cycles, whereas the degradation of fatigue strength after 107 cycles was very small in A5083P-O but large in A7075-T6 and A6061-T6. A5083P-O revealed fatigue limits at around 107 cycles. The heat treatment effects determined the presence or absence of fatigue limits because the equivalent tensile strengths between A6061-T6 and A5083P-O excluded the possibility of tensile strength effects. The stress ratio effects on gigacycle fatigue strengths of the wrought aluminum alloys are reasonable and can be estimated in conventional ways.

References

1.
Furuya
Y.
,
Hirukawa
H.
, and
Takeuchi
E.
, “
Gigacycle Fatigue in High Strength Steels
,”
Science and Technology of Advanced Materials
20
, no. 
1
(
2019
):
643
656
, https://doi.org/10.1080/14686996.2019.1610904
2.
Nishijima
S.
and
Kanazawa
K.
, “
Stepwise S-N Curve and Fish-Eye Failure in Gigacycle Fatigue
,”
Fatigue & Fracture of Engineering Materials & Structures
22
, no. 
7
(July
1999
):
601
607
, https://doi.org/10.1046/j.1460-2695.1999.00206.x
3.
Sakai
T.
,
Lian
B.
,
Takeda
M.
,
Shiozawa
K.
,
Oguma
N.
,
Ochi
Y.
,
Nakajima
M.
, and
Nakamura
T.
, “
Statistical Duplex S–N Characteristics of High Carbon Chromium Bearing Steel in Rotating Bending in Very High Cycle Regime
,”
International Journal of Fatigue
32
, no. 
3
(March
2010
):
497
504
, https://doi.org/10.1016/j.ijfatigue.2009.08.001
4.
Murakami
Y.
,
Nomoto
T.
, and
Ueda
T.
, “
Factors Influencing the Mechanism of Superlong Fatigue Failure in Steels
,”
Fatigue & Fracture of Engineering Materials & Structures
22
, no. 
7
(July
1999
):
581
590
, https://doi.org/10.1046/j.1460-2695.1999.00187.x
5.
Murakami
Y.
,
Yokoyama
N. N.
, and
Nagata
J.
, “
Mechanism of Fatigue Failure in Ultralong Life Regime
,”
Fatigue & Fracture of Engineering Materials & Structures
25
, nos. 
8–9
(September
2002
):
735
746
, https://doi.org/10.1046/j.1460-2695.2002.00576.x
6.
Shiozawa
K.
,
Lu
L.
, and
Ishihara
S.
, “
S–N Curve Characteristics and Subsurface Crack Initiation Behaviour in Ultra-Long Life Fatigue of a High Carbon-Chromium Bearing Steel
,”
Fatigue & Fracture of Engineering Materials & Structures
24
, no. 
12
(December
2001
):
781
790
, https://doi.org/10.1046/j.1460-2695.2001.00459.x
7.
Ochi
Y.
,
Matsumura
T.
,
Masaki
K.
, and
Yoshida
S.
, “
High-Cycle Rotating Bending Fatigue Property in Very Long-Life Regime of High Strength Steels
,”
Fatigue & Fracture of Engineering Materials & Structures
25
, nos. 
8–9
(September
2002
):
823
830
, https://doi.org/10.1046/j.1460-2695.2002.00575.x
8.
Abe
T.
,
Furuya
Y.
, and
Matsuoka
S.
, “
Gigacycle Fatigue Properties of 1800 MPa Class Spring Steels
,”
Fatigue & Fracture of Engineering Materials & Structures
27
, no. 
2
(February
2004
):
159
167
, https://doi.org/10.1111/j.1460-2695.2004.00737.x
9.
Takeuchi
E.
,
Furuya
Y.
,
Nagashima
N.
, and
Matsuoka
S.
, “
The Effect of Frequency on the Giga-Cycle Fatigue Properties of a Ti–6Al–4V Alloy
,”
Fatigue & Fracture of Engineering Materials & Structures
31
, no. 
7
(July
2008
):
599
605
, https://doi.org/10.1111/j.1460-2695.2008.01257.x
10.
Furuya
Y.
and
Takeuchi
E.
, “
Gigacycle Fatigue Properties of Ti–6Al–4V Alloy under Tensile Mean Stress
,”
Materials Science and Engineering: A
598
(March
2014
):
135
140
, https://doi.org/10.1016/j.msea.2014.01.019
11.
Mason
W. P.
, “
Internal Friction and Fatigue in Metals at Large Strain Amplitudes
,”
The Journal of the Acoustical Society of America
28
, no. 
6
(November
1956
):
1207
1218
, https://doi.org/10.1121/1.1908595
12.
Mayer
H.
, “
Fatigue Crack Growth and Threshold Measurements at Very High Frequencies
,”
International Materials Reviews
44
, no. 
1
(
1999
):
1
34
, https://doi.org/10.1179/imr.1999.44.1.1
13.
Ishii
H.
,
Yagasaki
T.
, and
Akagi
H.
, “
Evaluation of Giga-Cycle Fatigue Properties of Some Maraging Steels by Intermittent Ultrasonic Fatigue Testing
,”
Fatigue & Fracture of Engineering Materials & Structures
25
, nos. 
8–9
(September
2002
):
831
835
, https://doi.org/10.1046/j.1460-2695.2002.00561.x
14.
Bathias
C.
and
Paris
P. C.
,
Gigacycle Fatigue in Mechanical Practice
(
New York
:
Marcel Decker
,
2005
).
15.
Mayer
H.
, “
Recent Developments in Ultrasonic Fatigue
,”
Fatigue & Fracture of Engineering Materials & Structures
39
, no. 
1
(January
2016
):
3
29
, https://doi.org/10.1111/ffe.12365
16.
Wood
W. A.
and
Mason
W. P.
, “
Fatigue Mechanism in Iron at Ultrasonic Frequency
,”
Journal of Applied Physics
40
, no. 
11
(October
1969
):
4514
4516
, https://doi.org/10.1063/1.1657225
17.
Tsutsumi
N.
,
Murakami
Y.
, and
Doquet
V.
, “
Effect of Test Frequency on Fatigue Strength of Low Carbon Steel
,”
Fatigue & Fracture of Engineering Materials & Structures
32
, no. 
6
(June
2009
):
473
483
, https://doi.org/10.1111/j.1460-2695.2009.01350.x
18.
Furuya
Y.
,
Matsuoka
S.
,
Abe
T.
, and
Yamaguchi
K.
, “
Gigacycle Fatigue Properties for High-Strength Low-Alloy Steel at 100 Hz, 600 Hz, and 20 kHz
,”
Scripta Materialia
46
, no. 
2
(January
2002
):
157
162
, https://doi.org/10.1016/S1359-6462(01)01213-1
19.
Furuya
Y.
,
Abe
T.
, and
Matsuoka
S.
, “
1010-Cycle Fatigue Properties of 1800 MPa-Class JIS-SUP7 Spring Steel
,”
Fatigue & Fracture of Engineering Materials & Structures
26
, no. 
7
(July
2003
):
641
645
, https://doi.org/10.1046/j.1460-2695.2003.00661.x
20.
Method for Ultrasonic Fatigue Testing in Metallic Material
(in Japanese),
WES 1112
(
Tokyo
:
The Japan Welding Engineering Society
,
2022
).
21.
Furuya
Y.
,
Shimamura
Y.
,
Takanashi
M.
, and
Ogawa
T.
, “
Standardization of an Ultrasonic Fatigue Testing Method in Japan
,”
Fatigue & Fracture of Engineering Materials & Structures
45
, no. 
8
(August
2022
):
2415
2420
, https://doi.org/10.1111/ffe.13727
22.
Furuya
Y.
,
Nishikawa
H.
,
Hirukawa
H.
,
Nagashima
N.
, and
Takeuchi
E.
, “
Catalogue of NIMS Fatigue Data Sheets
,”
Science and Technology of Advanced Materials
20
, no. 
1
(
2019
):
1055
1072
, https://doi.org/10.1080/14686996.2019.1680574
23.
Furuya
Y.
,
Nishikawa
H.
,
Hirukawa
H.
,
Nagashima
N.
, and
Takeuchi
E.
,
Data Sheet on Giga-Cycle Fatigue Properties of A5083P-O (Al-4.5Mg-0.6Mn) Aluminium Alloy Plates, NIMS Fatigue Data Sheet No. 119
(
Tsukuba, Japan
:
National Institute for Materials Science
,
2015
).
24.
Furuya
Y.
,
Nishikawa
H.
,
Hirukawa
H.
,
Nagashima
N.
, and
Takeuchi
E.
,
Data Sheet on Giga-Cycle Fatigue Properties of A5083P-O (Al-4.5Mg-0.6Mn) Aluminium Alloy Plates at High Stress Ratios, NIMS Fatigue Data Sheet No. 121
(
Tsukuba, Japan
:
National Institute for Materials Science
,
2016
).
25.
Furuya
Y.
,
Nishikawa
H.
,
Hirukawa
H.
,
Nagashima
N.
, and
Takeuchi
E.
,
Data Sheet on Giga-Cycle Fatigue Properties of A7075-T6 (Al-5.6Zn-2.5Mg-1.6Cu) Aluminium Alloy, NIMS Fatigue Data Sheet No. 125
(
Tsukuba, Japan
:
National Institute for Materials Science
,
2018
).
26.
Furuya
Y.
,
Nishikawa
H.
,
Hirukawa
H.
,
Nagashima
N.
, and
Takeuchi
E.
,
Data Sheet on Giga-Cycle Fatigue Properties of A7075-T6 (Al-5.6Zn-2.5Mg-1.6Cu) Aluminium Alloy at High Stress Ratios, NIMS Fatigue Data Sheet No. 126
(
Tsukuba, Japan
:
National Institute for Materials Science
,
2019
).
27.
Furuya
Y.
,
Nishikawa
H.
,
Hirukawa
H.
,
Nagashima
N.
, and
Takeuchi
E.
,
Data Sheets on Giga-Cycle Fatigue Properties of A6061-T6 (Al-1.0Mg-0.6Si) Aluminium Alloy. NIMS Fatigue Data Sheet No. 130
(
Tsukuba, Japan
:
National Institute for Materials Science
,
2021
).
28.
Hirukawa
H.
,
Furuya
Y.
,
Nishikawa
H.
,
Nagashima
N.
, and
Takeuchi
E.
, “
NIMS Fatigue Data Sheet on Gigacycle Fatigue Properties of A6061-T6 (Al-1.0Mg-0.6Si) Aluminium Alloy at High Stress Ratios
,”
Science and Technology of Advanced Materials: Methods
2
, no. 
1
(
2022
):
232
249
, https://doi.org/10.1080/27660400.2022.2085020
29.
Mayer
H.
,
Papakyriacou
M.
,
Pippan
R.
, and
Stanzl-Tschegg
S.
, “
Influence of Loading Frequency on the High Cycle Fatigue Properties of AlZnMgCu1.5 Aluminium Alloy
,”
Materials Science and Engineering: A
314
, nos. 
1–2
(September
2001
):
48
54
, https://doi.org/10.1016/S0921-5093(00)01913-4
30.
Mayer
H.
,
Schuller
R.
, and
Fitzka
M.
, “
Fatigue of 2024-T351 Aluminium Alloy at Different Load Ratios Up to 1010 Cycles
,”
International Journal of Fatigue
57
(December
2013
):
113
119
, https://doi.org/10.1016/j.ijfatigue.2012.07.013
31.
Zhu
X.
,
Jones
J. W.
, and
Allison
J. E.
, “
Effect of Frequency, Environment, and Temperature on Fatigue Behavior of E319 Cast Aluminum Alloy: Stress-Controlled Fatigue Life Response
,”
Metallurgical and Materials Transactions A
39
, no. 
11
(November
2008
):
2681
2688
, https://doi.org/10.1007/s11661-008-9631-1
32.
Zhu
X.
,
Jones
J. W.
, and
Allison
J. E.
, “
Effect of Frequency, Environment, and Temperature on Fatigue Behavior of E319 Cast Aluminum Alloy: Small Crack Propagation
,”
Metallurgical and Materials Transactions A
39
, no. 
11
(November
2008
):
2666
2680
, https://doi.org/10.1007/s11661-008-9630-2
33.
Furuya
Y.
, “
1011 Gigacycle Fatigue Properties of High-Strength Steel
,”
ISIJ International
61
, no. 
1
(
2021
):
396
400
, https://doi.org/10.2355/isijinternational.ISIJINT-2020-212
This content is only available via PDF.
You do not currently have access to this content.