ABSTRACT

In the very high cycle fatigue regime, fatigue crack initiation in high-strength steels is usually correlated to a subsurface inclusion with a fine granular area (FGA). Localized stress–strain concentration at the subsurface inclusion is a critical factor. Fatigue crack initiation with an FGA in the bulk matrix without any defect has rarely been reported. In this paper, a fundamental study on the formation of FGAs in the bulk matrix of an austenitic stainless steel has been carried out using a progressive stepwise load-increasing test with a cycle step of about 108 cycles. FGA formation in the subsurface bulk matrix has been observed. The microstructural damage in the fatigue-tested specimens has been studied using the electron channeling contrast imaging electron microscopy technique. Strain localization and grain fragmentation are the main processes for the formation of FGAs. Local plasticity exhaustion leads to crack initiation due to local stress concentrations. This method can also be used to predict the fatigue damage process, especially the damage rate in individual specimens.

References

1.
H.
 
Mughrabi
and
H. W.
 
Höppel
, “
Cyclic Deformation and Fatigue Properties of Very Fine Grained Metals and Alloys
,”
International Journal of Fatigue
32
, no. 
9
(September
2010
):
1413
1427
,
2.
P.
 
Lukáš
and
L.
 
Kunz
, “
Specific Features of High-Cycle and Ultra-High-Cycle Fatigue
,”
Fatigue & Fracture of Engineering Materials & Structures
25
, nos. 
8–9
(September
2002
):
747
753
,
3.
W. A.
 
Wood
,
S. McK.
 
Cousland
, and
K. R.
 
Sargant
, “
Systematic Microstructural Changes Peculiar to Fatigue Deformation
,”
Acta Metallurgica
11
, no. 
7
(July
1963
):
643
652
,
4.
P. J. E.
 
Forsyth
, “
Fatigue Damage and Crack Growth in Aluminium Alloys
,”
Acta Metallurgica
11
, no. 
7
(July
1963
):
703
715
,
5.
S. E.
 
Stanzl
,
E. K.
 
Tschegg
, and
H.
 
Mayer
, “
Lifetime Measurements for Random Loading in the Very High Cycle Fatigue Range
,”
International Journal of Fatigue
8
, no. 
4
(October
1986
):
195
200
,
6.
Y.
 
Murakami
,
Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusion
(
Oxford
:
Elesvier Science
,
2002
).
7.
C.
 
Bathias
and
P. C.
 
Paris
,
Gigacycle Fatigue in Mechanical Practice
, 1st ed. (
New York
:
Marcel Dekker
,
2005
).
8.
G.
 
Chai
,
T.
 
Forsman
,
E.
 
Gustavsson
, and
C.
 
Wang
, “
Formation of Fine Grained Area in Martensitic Steel during Very High Cycle Fatigue
,”
Fatigue & Fracture of Engineering Materials & Structures
38
, no. 
11
(November
2015
):
1315
1323
,
9.
G.
 
Chai
,
N.
 
Zhou
,
S.
 
Ciurea
,
M.
 
Andersson
, and
R. L.
 
Peng
, “
Local Plasticity Exhaustion in a Very High Cycle Fatigue Regime
,”
Scripta Materialia
66
, no. 
10
(May
2012
):
769
772
,
10.
T.
 
Sakai
,
H.
 
Harada
, and
N.
 
Oguma
, “
Crack Initiation Mechanism of Bearing Steel in High Cycle Fatigue
,” in
Fracture of Nano and Engineering Materials and Structures
, ed.
E. E.
 
Gdoutos
(
Berlin
:
Springer
,
2006
),
1129
1130
, https://doi.org/10.1007/1-4020-4972-2_560
11.
Y.
 
Hong
and
C.
 
Sun
, “
The Nature and the Mechanism of Crack Initiation and Early Growth for Very-High-Cycle Fatigue of Metallic Materials – An Overview
,”
Theoretical and Applied Fracture Mechanics
92
(December
2017
):
331
350
,
12.
A.
 
Sharma
,
M. C.
 
Oh
, and
B.
 
Ahn
, “
Recent Advances in Very High Cycle Fatigue Behavior of Metals and Alloys—A Review
,”
Metals
10
, no. 
9
(September
2020
):
1200
,
13.
J. P.
 
Sippel
and
E.
 
Kerscher
, “
Properties of the Fine Granular Area and Postulated Models for Its Formation during Very High Cycle Fatigue—A Review
,”
Applied Sciences
10
, no. 
23
(December
2020
):
8475
,
14.
M.
 
Avateffazeli
and
M.
 
Haghshenas
, “
Ultrasonic Fatigue of Laser Beam Powder Bed Fused Metals: A State-of-the-Art Review
,”
Engineering Failure Analysis
134
(April
2022
):
106015
,
15.
P.
 
Grad
,
B.
 
Reuscher
,
A.
 
Brodyanski
,
M.
 
Kopnarski
, and
E.
 
Kerscher
, “
Mechanism of Fatigue Crack Initiation and Propagation in the Very High Cycle Fatigue Regime of High-Strength Steels
,”
Scripta Materialia
67
, no. 
10
(November
2012
):
838
841
,
16.
D.
 
Spriestersbach
and
E.
 
Kerscher
, “
The Role of Local Plasticity during Very High Cycle Fatigue Crack Initiation in High-Strength Steels
,”
International Journal of Fatigue
111
(June
2018
):
93
100
,
17.
A.
 
Giertler
,
M.
 
Söker
,
B.
 
Dönges
,
K.
 
Istomin
,
W.
 
Ludwig
,
U.
 
Pietsch
,
C. P.
 
Fritzen
,
H.-J.
 
Christ
, and
U.
 
Krupp
, “
The Significance of Local Plasticity for the Crack Initiation Process during Very High Cycle Fatigue of High Strength Steels
,”
Procedia Materials Science
3
(
2014
):
1353
1358
,
18.
Y.
 
Nakamura
,
T.
 
Sakai
,
H.
 
Hirano
, and
K. S.
 
Ravi Chandran
, “
Effect of Alumite Surface Treatments on Long-Life Fatigue Behavior of a Cast Aluminum in Rotating Bending
,”
International Journal of Fatigue
32
, no. 
3
(March
2010
):
621
626
,
19.
Y. D.
 
Li
,
Z. G.
 
Yang
,
S. X.
 
Li
,
Y. B.
 
Liu
, and
S. M.
 
Chen
, “
Correlations between Very High Cycle Fatigue Properties and Inclusion of GCr15 Bearing Steel
” (in Chinese),
Acta Metallurgica Sinica
44
, no. 
8
(August
2008
):
968
972
.
20.
T.
 
Sakai
,
N.
 
Oguma
, and
A.
 
Morikawa
, “
Microscopic and Nanoscopic Observations of Metallurgical Structures around Inclusions at Interior Crack Initiation Site for a Bearing Steel in Very High-Cycle Fatigue
,”
Fatigue & Fracture of Engineering Materials & Structures
38
, no. 
11
(November
2015
):
1305
1314
,
21.
M. L.
 
Zhu
,
G.
 
Zhu
, and
F. Z.
 
Xuan
, “
On Micro-Defect Induced Cracking in Very High Cycle Fatigue Regime
,”
Fatigue & Fracture of Engineering Materials & Structures
45
, no. 
11
(November
2022
):
3393
3402
,
22.
G.
 
Chai
, “
The Formation of Subsurface Non-defect Fatigue Crack Origins
,”
International Journal of Fatigue
28
, no. 
11
(November
2006
):
1533
1539
,
23.
Q. Y.
 
Wang
,
J. Y.
 
Berard
,
S.
 
Rathery
, and
C.
 
Bathias
, “
Technical Note High-Cycle Fatigue Crack Initiation and Propagation Behaviour of High-Strength Spring Steel Wires
,”
Fatigue & Fracture of Engineering Materials & Structures
22
, no. 
8
(August
1999
):
673
677
,
24.
E.-
Marcel Prot
, “
L’essai de fatigue sous charge progressive. Une nouvelle technique d’essai des matériaux
” (in French),
La Revue de Médecine
45
, no. 
12
(December
1948
):
481
489
,
25.
C.
 
Thomas
,
I.
 
Sosa
,
J.
 
Setién
,
J. C.
 
Polanco
, and
A. I.
 
Cimentada
, “
Evaluation of the Fatigue Behaviour of Recycled Aggregate Concrete
,”
Journal of Cleaner Production
65
(February
2014
):
397
405
,
26.
P.
 
Starke
,
F.
 
Walther
, and
D.
 
Eifler
, “
‘PHYBAL’ A Short-Time Procedure for a Reliable Fatigue Life Calculation
,”
Advanced Engineering Materials
12
, no. 
4
(April
2010
):
276
282
,
27.
P.
 
Kucharczyk
,
A.
 
Rizos
,
S.
 
Münstermann
, and
W.
 
Bleck
, “
Estimation of the Endurance Fatigue Limit for Structural Steel in Load Increasing Tests at Low Temperature
,”
Fatigue & Fracture of Engineering Materials & Structures
35
, no. 
7
(July
2012
):
628
637
,
28.
F.
 
Walther
and
D.
 
Eifler
, “
Cyclic Deformation Behaviour of Steels and Light-Metal Alloys
,”
Materials Science and Engineering: A
468–470
(November
2007
):
259
266
,
29.
G.
 
Chai
,
L.
 
Ewenz
,
K.
 
Persson
,
J.
 
Bergström
,
C.
 
Burman
, and
M.
 
Zimmermann
, “
Fatigue Behavior in Metastable Stainless Steel during Very High Cycle Fatigue Using Stepwise Loading Method
,” in
VHCF7: Seventh International Conference on Very High Cycle Fatigue
, eds.
M.
 
Zimmermann
and
H.-J.
 
Christ
(
Berlin
:
German Association for Materials Research and Testing
,
2017
),
174
179
.
30.
Y.-H.
 
Chung
,
T.-C.
 
Chen
,
H.-B.
 
Lee
, and
L.-W.
 
Tsay
, “
Effect of Micro-Shot Peening on the Fatigue Performance of AISI 304 Stainless Steel
,”
Metals
11
, no. 
9
(September
2021
):
1408
,
31.
K. Y.
 
Zhang
,
Y. S.
 
Pyoun
,
X. J.
 
Cao
,
B.
 
Wu
, and
R.
 
Murakami
, “
Fatigue Properties of SUS304 Stainless Steel after Ultrasonic Nanocrystal Surface Modification (UNSM)
,” in
International Journal of Modern Physics: Conference Series
, vol. 6 (
Singapore
:
World Scientific
,
2012
),
330
335
, https://doi.org/10.1142/S201019451200339X
32.
N. B.
 
Fredj
,
M. B.
 
Nasr
,
A. B.
 
Rhouma
,
H.
 
Sidhom
, and
C.
 
Braham
, “
Fatigue Life Improvements of the AISI 304 Stainless Steel Ground Surfaces by Wire Brushing
,”
Journal of Materials Engineering and Performance
13
, no. 
5
(October
2004
):
564
574
,
33.
S.
 
Birosca
, “
The Deformation Behaviour of Hard and Soft Grains in RR1000 Nickel-Based Superalloy
,”
IOP Conference Series: Materials Science and Engineering
82
(
2015
):
012033
,
34.
M. W.
 
Tofique
, “
Initiation and Early Crack Growth in VHCF of Stainless Steels: Experimental and Theoretical Analysis
” (PhD diss,
Karlstad University
,
2016
).
35.
H. A.
 
Padilla
 II
and
B. L.
 
Boyce
, “
A Review of Fatigue Behavior in Nanocrystalline Metals
,”
Experimental Mechanics
50
, no. 
1
(January
2010
):
5
23
,
36.
M. A.
 
Miner
, “
Cumulative Damage in Fatigue
,”
Journal of Applied Mechanics
12
, no. 
3
(September
1945
):
A159
A164
,
37.
E. J.
 
Hearn
,
Mechanics of Materials
, 3rd ed. (
Oxford
:
Butterworth-Heinemann
,
1997
).
38.
H.
 
Mughrabi
, “
Microstructural Mechanisms of Cyclic Deformation, Fatigue Crack Initiation and Early Crack Growth
,”
Philosophical Transactions of the Royal Society A, Mathematical, Physical, and Engineering Sciences
373
, no. 
2038
(March
2015
):
20140132
,
39.
T.
 
Sakai
, “
Historical Review and Future Prospects for Researches on Very High Cycle Fatigue of Metallic Material
,”
Fatigue & Fracture of Engineering Materials & Structures
46
, no. 
4
(April
2023
):
1217
1255
,
40.
G.
 
Chai
, “
Fatigue Behaviour of Duplex Stainless Steels in the Very High Cycle Regime
,”
International Journal of Fatigue
28
, no. 
11
(November
2006
):
1611
1617
,
41.
G.
 
Chai
, “
Analysis of Microdamage in a Nickel-Base Alloy during Very High Cycle Fatigue
,”
Fatigue & Fracture of Engineering Materials & Structures
39
, no. 
6
(June
2016
):
712
721
,
42.
C.
 
Wang
, “
Microplasticité et dissipation en fatigue à très grand nombre de cycles du fer et de l’acier
” (PhD diss.,
Université Paris Ouest Nanterre La Defense
,
2013
).
43.
H.
 
Mughrabi
, “
Cyclic Slip Irreversibility and Fatigue Life: A Microstructure-Based Analysis
,”
Acta Materialia
61
, no. 
4
(February
2013
):
1197
1203
,
44.
M.
 
Sadek
,
J.
 
Bergström
,
N.
 
Hallbäck
,
C.
 
Burman
,
R.
 
Elvira
, and
B.
 
Escauriaza
, “
Fatigue Strength and Fracture Mechanisms in the Very-High-Cycle-Fatigue Regime of Automotive Steels
,”
Steel Research International
91
, no. 
8
(August
2020
):
2000060
,
45.
D. O.
 
Swenson
, “
Transition between Stage I and Stage II Modes of Fatigue Crack Growth
,”
Journal of Applied Physics
40
, no. 
9
(August
1969
):
3467
3475
,
46.
Y.
 
Murakami
, “
Analysis of Stress Intensity Factors of Modes I, II and III for Inclined Surface Cracks of Arbitrary Shape
,”
Engineering Fracture Mechanics
22
, no. 
1
(
1985
):
101
114
,
You do not currently have access to this content.