ABSTRACT

This work predicts bulk elastic properties and solves the wave function probabilistically using the density functional theory and by fixing outcomes with instrumented indentation. Revised bulk properties may predict crack start and propagation. Author-scripted pre- and post-processing in Abaqus simulated crack spread. Ultrasonic fatigue simulations increased fatigue life because the fracture onset phase was longer. We demonstrate that fatigue strength relies on elastic modulus because they are correlated. The verified results do not depend on any experimental evidence. Machine systems and scanning technologies have boosted the usage of selective laser-melted materials, leading to virtually full-density products. Microstructure and porosity from powder melting generate inconsistent mechanical performance under cyclic load. The extended finite element method was used to simulate crack propagation over an arbitrary fracture path to analyze fatigue crack development in additively generated fatigue specimens. Using fracture energy rate curves, loading level and testing frequency were evaluated on fatigue life. Micro computerized tomography (µ-CT) scans provide two-dimensional angular pictures. Several methods minimize faces and vertices. Open-source software was utilized to construct finite element models using µ-CT projections and to separate the cylindrical shell from internal pores. Crack propagation rate curves were used to investigate the impacts of loading level and testing frequency.

References

1.
F.
 
Sansoz
and
H.
 
Ghonem
, “
Effects of Loading Frequency on Fatigue Crack Growth Mechanisms in α/β Ti Microstructure with Large Colony Size
,”
Materials Science and Engineering: A
356
, nos. 
1–2
(September
2003
):
81
92
,
2.
X.
 
Zhang
,
F.
 
Martina
,
J.
 
Ding
,
X.
 
Wang
, and
S. W.
 
Williams
, “
Fracture Toughness and Fatigue Crack Growth Rate Properties in Wire + Arc Additive Manufactured Ti-6Al-4V
,”
Fatigue & Fracture of Engineering Materials & Structures
40
, no. 
5
(May
2017
):
790
803
,
3.
P. D.
 
Nezhadfar
,
K.
 
Anderson-Wedge
,
S. R.
 
Daniewicz
,
N.
 
Phan
,
S.
 
Shao
, and
N.
 
Shamsaei
, “
Improved High Cycle Fatigue Performance of Additively Manufactured 17-4 PH Stainless Steel via In-Process Refining Micro-/Defect-Structure
,”
Additive Manufacturing
36
(December
2020
):
101604
,
4.
E.
 
Natkowski
,
P.
 
Sonnweber-Ribic
, and
S.
 
Münstermann
, “
Determination of Fatigue Lifetimes with a Micromechanical Short Crack Model for the High-Strength Steel SAE 4150
,”
International Journal of Fatigue
156
(March
2022
):
106621
,
5.
Y.
 
Xu
,
W.
 
Wan
, and
F. P. E.
 
Dunne
, “
Microstructural Fracture Mechanics: Stored Energy Density at Fatigue Cracks
,”
Journal of the Mechanics and Physics of Solids
146
(January
2021
):
104209
,
6.
H.
 
Dirik
and
T.
 
Yalçinkaya
, “
Crack Path and Life Prediction under Mixed Mode Cyclic Variable Amplitude Loading through XFEM
,”
International Journal of Fatigue
114
(September
2018
):
34
50
,
7.
H.
 
Dirik
and
T.
 
Yalçinkaya
, “
Fatigue Crack Growth under Variable Amplitude Loading through XFEM
,”
Procedia Structural Integrity
2
(
2016
):
3073
3080
,
8.
L.
 
Li
,
L.
 
Shen
, and
G.
 
Proust
, “
Fatigue Crack Initiation Life Prediction for Aluminium Alloy 7075 Using Crystal Plasticity Finite Element Simulations
,”
Mechanics of Materials
81
(February
2015
):
84
93
,
9.
H.
 
Hallberg
,
S. K.
 
Ås
, and
B.
 
Skallerud
, “
Crystal Plasticity Modeling of Microstructure Influence on Fatigue Crack Initiation in Extruded Al6082-T6 with Surface Irregularities
,”
International Journal of Fatigue
111
(June
2018
):
16
32
,
10.
Y. W.
 
Choi
,
Z.
 
Dong
,
W.
 
Li
,
S.
 
Schönecker
,
H.
 
Kim
,
S. K.
 
Kwon
, and
L.
 
Vitos
, “
Predicting the Stacking Fault Energy of Austenitic Fe-Mn-Al (Si) Alloys
,”
Materials & Design
187
(February
2020
):
108392
,
11.
F. H.
 
Bhuiyan
and
R. S.
 
Fertig
 III
, “
Predicting Matrix and Delamination Fatigue in Fiber-Reinforced Polymer Composites Using Kinetic Theory of Fracture
,”
International Journal of Fatigue
117
(December
2018
):
327
339
,
12.
S.
 
Shrestha
,
M.
 
Kannan
,
G. N.
 
Morscher
,
M. J.
 
Presby
, and
S.
 
Mostafa Razavi
, “
In-Situ Fatigue Life Analysis by Modal Acoustic Emission, Direct Current Potential Drop and Digital Image Correlation for Steel
,”
International Journal of Fatigue
142
(January
2021
):
105924
,
13.
M.
 
Awd
,
J.
 
Johannsen
,
T.
 
Chan
,
M.
 
Merghany
,
C.
 
Emmelmann
, and
F.
 
Walther
, “
Improvement of Fatigue Strength in Lightweight Selective Laser Melted Alloys by In-Situ and Ex-Situ Composition and Heat Treatment
,” in
TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings
, ed. The Minerals, Metals & Materials Society (
Cham, Switzerland
:
Springer Cham
,
2020
),
115
126
, https://doi.org/10.1007/978-3-030-36296-6_11
14.
M.
 
Awd
,
M. F.
 
Labanie
,
K.
 
Moehring
,
A.
 
Fatemi
, and
F.
 
Walther
, “
Towards Deterministic Computation of Internal Stresses in Additively Manufactured Materials under Fatigue Loading: Part I
,”
Materials
13
, no. 
10
(May
2020
):
2318
,
15.
M.
 
Awd
and
F.
 
Walther
, “
Numerical Investigation of the Influence of Fatigue Testing Frequency on the Fracture and Crack Propagation Rate of Additive-Manufactured AlSi10Mg and Ti-6Al-4V Alloys
,”
Solids
3
, no. 
3
(September
2022
):
430
446
,
16.
K.
 
Tamvakis
,
Basic Quantum Mechanics
(
Cham, Switzerland
:
Springer International Publishing
,
2019
).
17.
W.
 
Kohn
and
L. J.
 
Sham
, “
Self-Consistent Equations Including Exchange and Correlation Effects
,”
Physical Review
140
, no. 
4A
(November
1965
):
A1133
A1138
,
18.
G.
 
Kresse
and
D.
 
Joubert
, “
From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method
,”
Physical Review B
59
, no. 
3
(January
1999
):
1758
1775
,
19.
F.
 
Appel
and
R.
 
Wagner
, “
Intermetallics: Titanium Aluminides
,” in
Encyclopedia of Materials: Science and Technology
, 2nd ed. (
Oxford
:
Pergamon
,
2001
),
4246
4264
, https://doi.org/10.1016/B0-08-043152-6/00745-2
20.
W. C.
 
Oliver
and
G. M.
 
Pharr
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
Journal of Materials Research
7
, no. 
6
(June
1992
):
1564
1583
,
21.
T.
 
Belytschko
and
T.
 
Black
, “
Elastic Crack Growth in Finite Elements with Minimal Remeshing
,”
International Journal for Numerical Methods in Engineering
45
, no. 
5
(June
1999
):
601
620
,
22.
M.
 
Awd
,
S.
 
Münstermann
, and
F.
 
Walther
, “
Effect of Microstructural Heterogeneity on Fatigue Strength Predicted by Reinforcement Machine Learning
,”
Fatigue & Fracture of Engineering Materials & Structures
45
, no. 
11
(November
2022
):
3267
3287
,
23.
P.
 
Edwards
and
M.
 
Ramulu
, “
Fracture Toughness and Fatigue Crack Growth in Ti-6Al-4V Friction Stir Welds
,”
Fatigue & Fracture of Engineering Materials & Structures
38
, no. 
8
(August
2015
):
970
982
,
24.
X.
 
Xing
,
Y.
 
Wang
,
G.
 
Xiao
,
S.
 
Yu
,
Y.
 
Ma
,
X.
 
Shu
, and
Y.
 
Wu
, “
Rate-Dependent Indentation Size Effect on Hardness and Creep Behavior of a Titanium Metallization Film on Alumina Substrate
,”
Journal of Materials Research and Technology
15
(November–December
2021
):
4662
4671
,
25.
W.
 
Zhang
,
W.
 
Li
,
H.
 
Zhai
,
Y.
 
Wu
,
S.
 
Wang
,
G.
 
Liang
, and
R. J. K.
 
Wood
, “
Microstructure and Tribological Properties of Laser In-Situ Synthesized Ti3Al Composite Coating on Ti-6Al-4V
,”
Surface and Coatings Technology
395
(August
2020
):
125944
,
26.
L.
 
Zhang
,
A.
 
Pellegrino
,
D.
 
Townsend
, and
N.
 
Petrinic
, “
Thermomechanical Constitutive Behaviour of a Near α Titanium Alloy over a Wide Range of Strain Rates: Experiments and Modelling
,”
International Journal of Mechanical Sciences
189
(January
2021
):
105970
,
27.
M.
 
Smith
,
Abaqus/Standard User’s Manual, Version 6.9
(
Providence, RI
:
Dassault Systèmes Simulia Corp.
,
2009
).
28.
K.
 
Tanaka
, “
Mechanisms and Mechanics of Short Fatigue Crack Propagation
,”
JSME International Journal
30
, no. 
259
(
1987
):
1
13
,
29.
M.
 
Awd
,
Machine Learning Algorithm for Fatigue Fields in Additive Manufacturing
(
Wiesbaden, Germany
:
Springer Fachmedien Wiesbaden
,
2022
).
30.
F.
 
Ellyin
,
Fatigue Damage, Crack Growth and Life Prediction
(
London
:
Chapman & Hall
,
2012
).
31.
J.
 
Schijve
,
Fatigue of Structures and Materials
, 2nd ed. (
Dordrecht, the Netherlands
:
Springer Dordrecht
,
2009
).
32.
P. P.
 
Milella
,
Fatigue and Corrosion in Metals
(
Milano, Italy
:
Springer Milano
,
2013
).
You do not currently have access to this content.