Abstract

The study of the deformation and fracture mechanisms of power plant materials at elevated service temperature is of utmost importance in structural integrity assessment. In this work, interrupted miniature uniaxial tensile tests (MUTT) have been conducted to investigate the fracture evolution mechanisms for a Grade 91 steel at 600°C. The engineering stress–strain curves of the MUTT can be divided into six different stages, including the elastic stage, strain hardening stage, homogeneous plastic deformation stage, necking across the transverse and thickness direction stage, and finally, the fracture propagation stage. In addition to full history tests, MUTT were interrupted in each of the different stages to study the entire failure process evolution from the uniform deformation, necking to specimen separation, using optical microscopy and Scanning Electron Microscope (SEM). It has been shown that the necking of the interrupted testing specimens appears at Stage IV across the width direction prior to the thickness direction at Stage V. The thickness direction necking would lead to fracture rapidly. The void coalescence directly caused by damage has been observed in Stage VI.

References

1.
Morris
A.
,
Cacciapuoti
B.
, and
Sun
W.
, “
The Role of Small Specimen Creep Testing within a Life Assessment Framework for High Temperature Power Plant
,”
International Materials Reviews
63
, no. 
2
(June
2017
):
102
137
, https://doi.org/10.1080/09506608.2017.1332538
2.
Hyde
T. H.
,
Sun
W.
, and
Williams
J. A.
, “
Requirements for and Use of Miniature Test Specimens to Provide Mechanical and Creep Properties of Materials: A Review
,”
International Materials Reviews
52
, no. 
4
(July
2013
):
213
255
, https://doi.org/10.1179/174328007X160317
3.
Kumar
K.
,
Pooleery
A.
,
Madhusoodanan
K.
,
Singh
R. N.
,
Chakravartty
J. K.
,
Dutta
B. K.
, and
Sinha
R. K.
, “
Use of Miniature Tensile Specimen for Measurement of Mechanical Properties
,”
Procedia Engineering
86
(December
2014
):
899
909
, https://doi.org/10.1016/j.proeng.2014.11.112
4.
Lucas
G. E.
, “
Review of Small Specimen Test Techniques for Irradiation Testing
,”
Metallurgical Transactions A
21
, no. 
5
(May
1990
):
1105
1119
, https://doi.org/10.1007/BF02698242
5.
Priel
E.
,
Mittelman
B.
,
Haroush
S.
,
Turgeman
A.
,
Schneck
R.
, and
Gelbstein
Y.
, “
Estimation of Yield And Ultimate Stress Using the Small Punch Test Method Applied to Non-standard Specimens: A Computational Study Validated by Experiments
,”
International Journal of Mechanical Sciences
135
(January
2018
):
484
498
, https://doi.org/10.1016/j.ijmecsci.2017.11.040
6.
Sugimoto
T.
,
Komazaki
S.
, and
Misawa
T.
, “
Evaluation of DBTT and Creep Properties of Aged Main Valve Casing by Using Small Punch Specimens
,”
Key Engineering Materials
297–300
(November
2005
):
1470
1476
, https://doi.org/10.4028/www.scientific.net/KEM.297-300.1470
7.
Tanaka
K.
,
Amita
T.
,
Satou
T.
,
Koba
K.
,
Kusumoto
J.
, and
Kanaya
A.
, “
Evaluation on High Temperature Fracture Toughness of CrMoV Cast Steel by Small Punch Testing
,”
International Journal of Pressure Vessels and Piping
86
, no. 
9
(September
2009
):
643
648
, https://doi.org/10.1016/j.ijpvp.2009.04.006
8.
Panayotou
N. F.
,
Puigh
R. J.
, and
Opperman
E. K.
, “
Miniature Specimen Tensile Data for High Energy Neutron Source Experiments
,”
Journal of Nuclear Materials
104
(January
1981
):
1523
1526
, https://doi.org/10.1016/0022-3115(82)90816-9
9.
Madia
M.
,
Foletti
S.
,
Torsello
G.
, and
Cammi
A.
, “
On the Applicability of the Small Punch Test to the Characterization of the 1CrMoV Aged Steel: Mechanical Testing and Numerical Analysis
,”
Engineering Failure Analysis
34
(December
2013
):
189
203
, https://doi.org/10.1016/j.engfailanal.2013.07.028
10.
Lucas
G. E.
, “
The Development of Small Specimen Mechanical Test Techniques
,”
Journal of Nuclear Materials
117
(July
1983
):
327
339
, https://doi.org/10.1016/0022-3115(83)90041-7
11.
Ha
J. S.
and
Fleury
E.
, “
Small Punch Tests on Steels for Steam Power Plant (I)
,”
KSME International Journal
12
(October
1998
): 818, https://doi.org/10.1007/BF02945549
12.
Rodríguez
C.
,
Fernández
M.
,
Cabezas
J. G.
,
García
T. E.
, and
Belzunce
F. J.
, “
The Use of the Small Punch Test to Solve Practical Engineering Problems
,”
Theoretical and Applied Fracture Mechanics
86
, Part A (December
2016
):
109
116
, https://doi.org/10.1016/j.tafmec.2016.08.021
13.
Rodríguez
C.
,
Cabezas
J. G.
,
Cárdenas
E.
,
Belzunce
F. J.
, and
Betegón
C.
, “
Mechanical Properties Characterization of Heat-Affected Zone Using the Small Punch Test
,”
Welding Journal
88
, no. 
9
(September
2009
):
188
192
.
14.
Fernández
M.
,
Rodríguez
C.
,
Belzunce
F. J.
, and
García
T. E.
, “
Use of Small Punch Test to Estimate the Mechanical Properties of Powder Metallurgy Products Employed in the Automotive Industry
,”
Powder Metallurgy
58
, no. 
3
(July
2015
):
171
177
, https://doi.org/10.1179/0032589915Z.000000000242
15.
Hurtado-Noreña
C.
,
Danónb
C. A.
,
Luppob
M.
. I
, and
Bruzzonib
P.
, “
Microstructural Characterisation of a P91 Steel Normalised and Tempered at Different Temperatures
,” in
Structural Materials for Innovative Nuclear Systems (SMINS-3)
(
Paris
:
Organisation for Economic Co-operation and Development Nuclear Energy Agency
,
2015
),
196
205
.
16.
Noell
P. J.
,
Carroll
J. D.
, and
Boyce
B. L.
, “
The Mechanisms of Ductile Rupture
,”
Acta Materialia
161
(December
2018
):
83
98
, https://doi.org/10.1016/j.actamat.2018.09.006
17.
Giroux
P. F.
,
Dalle
F.
,
Sauzay
M.
,
Malaplate
J.
,
Fournier
B.
, and
Gourgues-Lorenzon
A. F.
, “
Mechanical and Microstructural Stability of P92 Steel under Uniaxial Tension at High Temperature
,”
Materials Science and Engineering: A
527
, nos. 
16–17
(June
2010
):
3984
3993
, https://doi.org/10.1016/j.msea.2010.03.001
This content is only available via PDF.
You do not currently have access to this content.