Abstract

This study models the temperature evolution during additive friction stir deposition (AFSD) using machine learning. AFSD is a solid-state additive manufacturing technology that deposits metal using plastic flow without melting. However, the ability to predict its performance using the underlying physics is in the early stage. A physics-informed machine learning approach, AFSD-Nets, is presented here to predict temperature profiles based on the combined effects of heat generation and heat transfer. The proposed AFSD-Nets includes a set of customized neural network approximators, which are used to model the coupled temperature evolution for the tool and build during multi-layer material deposition. Experiments are designed and performed using 7075 aluminum feedstock deposited on a substrate of the same material for 30 layers. A comparison of predictions and measurements shows that the proposed AFSD-Nets approach can accurately describe and predict the temperature evolution during the AFSD process.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Mishra
,
R. S.
,
Haridas
,
R. S.
, and
Agrawal
,
P.
,
2022
, “
Friction Stir-Based Additive Manufacturing
,”
Sci. Technol. Weld. Joining
,
27
(
3
), pp.
141
165
.
2.
Yu
,
H. Z.
, and
Mishra
,
R. S.
,
2021
, “
Additive Friction Stir Deposition: A Deformation Processing Route to Metal Additive Manufacturing
,”
Mater. Res. Lett.
,
9
(
2
), pp.
71
83
.
3.
Gopan
,
V.
,
Wins
,
K. L. D.
, and
Surendran
,
A.
,
2021
, “
Innovative Potential of Additive Friction Stir Deposition Among Current Laser Based Metal Additive Manufacturing Processes: A Review
,”
CIRP J. Manuf. Sci. Technol.
,
32
, pp.
228
248
.
4.
Kincaid
,
J.
,
Zameroski
,
R.
,
No
,
T.
,
Bohling
,
J.
,
Compton
,
B.
, and
Schmitz
,
T.
,
2023
, “
Hybrid Manufacturing: Combining Additive Friction Stir Deposition, Metrology, and Machining
,”
TMS Annual Meeting & Exhibition
,
San Diego, CA
,
Mar. 19–23
,
Springer
, pp.
3
13
.
5.
Schmitz
,
T.
,
Costa
,
L.
,
Canfield
,
B. K.
,
Kincaid
,
J.
,
Zameroski
,
R.
,
Garcia
,
R.
,
Frederick
,
C.
,
Rossy
,
A. M.
, and
Moeller
,
T. M.
,
2023
, “
Embedded QR Code for Part Authentication in Additive Friction Stir Deposition
,”
Manuf. Lett.
,
35
, pp.
16
19
.
6.
Kincaid
,
J.
,
Charles
,
E.
,
Garcia
,
R.
,
Dvorak
,
J.
,
No
,
T.
,
Smith
,
S.
, and
Schmitz
,
T.
,
2023
, “
Process Planning for Hybrid Manufacturing Using Additive Friction Stir Deposition
,”
Manuf. Lett.
,
37
, pp.
26
31
.
7.
Dvorak
,
J.
,
Gilmer
,
D.
,
Zameroski
,
R.
,
Cornelius
,
A.
, and
Schmitz
,
T.
,
2023
, “
Freeform Hybrid Manufacturing: Binderjet, Structured Light Scanning, Confocal Microscopy, and CNC Machining
,”
J. Manuf. Mater. Process.
,
7
(
2
), p.
79
.
8.
Schmitz
,
T.
,
Corson
,
G.
,
Olvera
,
D.
,
Tyler
,
C.
, and
Smith
,
S.
,
2023
, “
A Framework for Hybrid Manufacturing Cost Minimization and Preform Design
,”
CIRP Ann.
,
72
(
1
), pp.
373
376
.
9.
Jin
,
Y.
,
Yang
,
T.
,
Wang
,
T.
,
Dowden
,
S.
,
Neogi
,
A.
, and
Dahotre
,
N. B.
,
2023
, “
Behavioral Simulations and Experimental Evaluations of Stress Induced Spatial Nonuniformity of Dynamic Bulk Modulus in Additive Friction Stir Deposited AA 6061
,”
J. Manuf. Processes
,
94
, pp.
454
465
.
10.
Perry
,
M. E.
,
Rauch
,
H. A.
,
Griffiths
,
R. J.
,
Garcia
,
D.
,
Sietins
,
J. M.
,
Zhu
,
Y.
,
Zhu
,
Y.
, and
Hang
,
Z. Y.
,
2021
, “
Tracing Plastic Deformation Path and Concurrent Grain Refinement During Additive Friction Stir Deposition
,”
Materialia
,
18
, p.
101159
.
11.
Zhu
,
N.
,
Avery
,
D.
,
Chen
,
Y.
,
An
,
K.
,
Jordon
,
J.
,
Allison
,
P.
, and
Brewer
,
L.
,
2023
, “
Residual Stress Distributions in AA6061 Material Produced by Additive Friction Stir Deposition
,”
J. Mater. Eng. Perform.
,
32
(
12
), pp.
5535
5544
.
12.
Perry
,
M. E.
,
Griffiths
,
R. J.
,
Garcia
,
D.
,
Sietins
,
J. M.
,
Zhu
,
Y.
, and
Hang
,
Z. Y.
,
2020
, “
Morphological and Microstructural Investigation of the Non-Planar Interface Formed in Solid-State Metal Additive Manufacturing by Additive Friction Stir Deposition
,”
Addit. Manuf.
,
35
, p.
101293
.
13.
Griffiths
,
R. J.
,
Garcia
,
D.
,
Song
,
J.
,
Vasudevan
,
V. K.
,
Steiner
,
M. A.
,
Cai
,
W.
, and
Hang
,
Z. Y.
,
2021
, “
Solid-State Additive Manufacturing of Aluminum and Copper Using Additive Friction Stir Deposition: Process-Microstructure Linkages
,”
Materialia
,
15
, p.
100967
.
14.
Williams
,
M.
,
Robinson
,
T.
,
Williamson
,
C.
,
Kinser
,
R.
,
Ashmore
,
N.
,
Allison
,
P.
, and
Jordon
,
J.
,
2021
, “
Elucidating the Effect of Additive Friction Stir Deposition on the Resulting Microstructure and Mechanical Properties of Magnesium Alloy WE43
,”
Metals
,
11
(
11
), p.
1739
.
15.
Joshi
,
S. S.
,
Patil
,
S. M.
,
Mazumder
,
S.
,
Sharma
,
S.
,
Riley
,
D. A.
,
Dowden
,
S.
,
Banerjee
,
R.
, and
Dahotre
,
N. B.
,
2022
, “
Additive Friction Stir Deposition of AZ31B Magnesium Alloy
,”
J. Magnesium Alloys
,
10
(
9
), pp.
2404
2420
.
16.
Beladi
,
H.
,
Farabi
,
E.
,
Hodgson
,
P. D.
,
Barnett
,
M. R.
,
Rohrer
,
G. S.
, and
Fabijanic
,
D.
,
2022
, “
Microstructure Evolution of 316L Stainless Steel During Solid-State Additive Friction Stir Deposition
,”
Philos. Mag.
,
102
(
7
), pp.
618
633
.
17.
Farabi
,
E.
,
Babaniaris
,
S.
,
Barnett
,
M. R.
, and
Fabijanic
,
D. M.
,
2022
, “
Microstructure and Mechanical Properties of Ti6Al4 V Alloys Fabricated by Additive Friction Stir Deposition
,”
Addit. Manuf. Lett.
,
2
, p.
100034
.
18.
Garcia
,
D.
,
Hartley
,
W. D.
,
Rauch
,
H. A.
,
Griffiths
,
R. J.
,
Wang
,
R.
,
Kong
,
Z. J.
,
Zhu
,
Y.
, and
Hang
,
Z. Y.
,
2020
, “
In Situ Investigation into Temperature Evolution and Heat Generation During Additive Friction Stir Deposition: A Comparative Study of Cu and Al-Mg-Si
,”
Addit. Manuf.
,
34
, p.
101386
.
19.
Hartley
,
W. D.
,
Garcia
,
D.
,
Yoder
,
J. K.
,
Poczatek
,
E.
,
Forsmark
,
J. H.
,
Luckey
,
S. G.
,
Dillard
,
D. A.
, and
Hang
,
Z. Y.
,
2021
, “
Solid-state Cladding on Thin Automotive Sheet Metals Enabled by Additive Friction Stir Deposition
,”
J. Mater. Process. Technol.
,
291
, p.
117045
.
20.
Avery
,
D. Z.
,
Cleek
,
C.
,
Phillips
,
B. J.
,
Rekha
,
M.
,
Kinser
,
R. P.
,
Rao
,
H.
,
Brewer
,
L.
,
Allison
,
P.
, and
Jordon
,
J.
,
2022
, “
Evaluation of Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy Repaired via Additive Friction Stir Deposition
,”
ASME J. Eng. Mater. Technol.
,
144
(
3
), p.
031003
.
21.
Zeng
,
C.
,
Ghadimi
,
H.
,
Ding
,
H.
,
Nemati
,
S.
,
Garbie
,
A.
,
Raush
,
J.
, and
Guo
,
S.
,
2022
, “
Microstructure Evolution of Al6061 Alloy Made by Additive Friction Stir Deposition
,”
Materials
,
15
(
10
), p.
3676
.
22.
Phillips
,
B.
,
Mason
,
C.
,
Beck
,
S.
,
Avery
,
D.
,
Doherty
,
K.
,
Allison
,
P.
, and
Jordon
,
J.
,
2021
, “
Effect of Parallel Deposition Path and Interface Material Flow on Resulting Microstructure and Tensile Behavior of Al-Mg-Si Alloy Fabricated by Additive Friction Stir Deposition
,”
J. Mater. Process. Technol.
,
295
, p.
117169
.
23.
Stubblefield
,
G.
,
Fraser
,
K.
,
Phillips
,
B.
,
Jordon
,
J.
, and
Allison
,
P.
,
2021
, “
A Meshfree Computational Framework for the Numerical Simulation of the Solid-State Additive Manufacturing Process, Additive Friction Stir-Deposition (AFS-D)
,”
Mater. Des.
,
202
, p.
109514
.
24.
Stubblefield
,
G.
,
Fraser
,
K.
,
Van Iderstine
,
D.
,
Mujahid
,
S.
,
Rhee
,
H.
,
Jordon
,
J.
, and
Allison
,
P.
,
2022
, “
Elucidating the Influence of Temperature and Strain Rate on the Mechanics of AFS-D Through a Combined Experimental and Computational Approach
,”
J. Mater. Process. Technol.
,
305
, p.
117593
.
25.
Stubblefield
,
G.
,
Fraser
,
K.
,
Robinson
,
T.
,
Zhu
,
N.
,
Kinser
,
R.
,
Tew
,
J.
,
Cordle
,
B.
,
Jordon
,
J.
, and
Allison
,
P.
,
2023
, “
A Computational and Experimental Approach to Understanding Material Flow Behavior During Additive Friction Stir Deposition (AFSD)
,”
Comput. Part. Mech.
,
10
(
6
), pp.
1629
1643
.
26.
Kincaid
,
K. C.
,
MacPhee
,
D. W.
,
Stubblefield
,
G.
,
Jordon
,
J.
,
Rushing
,
T. W.
, and
Allison
,
P.
,
2023
, “
A Finite Volume Framework for the Simulation of Additive Friction Stir Deposition
,”
ASME J. Eng. Mater. Technol.
,
145
(
3
), p.
031002
.
27.
Gotawala
,
N.
, and
Hang
,
Z. Y.
,
2023
, “
Material Flow Path and Extreme Thermomechanical Processing History During Additive Friction Stir Deposition
,”
J. Manuf. Processes
,
101
, pp.
114
127
.
28.
Joshi
,
S. S.
,
Sharma
,
S.
,
Radhakrishnan
,
M.
,
Pantawane
,
M. V.
,
Patil
,
S. M.
,
Jin
,
Y.
,
Yang
,
T.
,
Riley
,
D. A.
,
Banerjee
,
R.
, and
Dahotre
,
N. B.
,
2022
, “
A Multi Modal Approach to Microstructure Evolution and Mechanical Response of Additive Friction Stir Deposited AZ31B Mg Alloy
,”
Sci. Rep.
,
12
(
1
), p.
13234
.
29.
Sharma
,
S.
,
Krishna
,
K. M.
,
Radhakrishnan
,
M.
,
Pantawane
,
M. V.
,
Patil
,
S. M.
,
Joshi
,
S. S.
,
Banerjee
,
R.
, and
Dahotre
,
N. B.
,
2022
, “
A Pseudo Thermo-Mechanical Model Linking Process Parameters to Microstructural Evolution in Multilayer Additive Friction Stir Deposition of Magnesium Alloy
,”
Mater. Des.
,
224
, p.
111412
.
30.
Shao
,
J.
,
Samaei
,
A.
,
Xue
,
T.
,
Xie
,
X.
,
Guo
,
S.
,
Cao
,
J.
,
MacDonald
,
E.
, and
Gan
,
Z.
,
2023
, “
Additive Friction Stir Deposition of Metallic Materials: Process, Structure and Properties
,”
Mater. Des.
,
234
, p.
112356
.
31.
Merritt
,
G. R.
,
Cousin
,
C. A.
, and
Yoon
,
H.-S.
,
2024
, “
Nonlinear Temperature Control of Additive Friction Stir Deposition Evaluated on an Echo State Network
,”
ASME J. Dyn. Syst., Meas., Control
,
146
(
2
), p.
021004
.
32.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
33.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
34.
Lu
,
L.
,
Pestourie
,
R.
,
Yao
,
W.
,
Wang
,
Z.
,
Verdugo
,
F.
, and
Johnson
,
S. G.
,
2021
, “
Physics-Informed Neural Networks With Hard Constraints for Inverse Design
,”
SIAM J. Sci. Comput.
,
43
(
6
), pp.
B1105
B1132
.
35.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
15
), pp.
3932
3937
.
36.
Shi
,
Z.
,
Ma
,
H.
,
Tran
,
H.
, and
Zhang
,
G.
,
2022
, “
Compressive-Sensing-Assisted Mixed Integer Optimization for Dynamical System Discovery With Highly Noisy Data
,”
arXiv preprint arXiv:2209.12663.
37.
Sahoo
,
S.
,
Lampert
,
C.
, and
Martius
,
G.
,
2018
, “
Learning Equations for Extrapolation and Control
,”
International Conference on Machine Learning
,
Stockholm, Sweden
,
July 10–15
,
PMLR
, pp.
4442
4450
.
You do not currently have access to this content.