Abstract

This paper presents a novel nondestructive testing system, magneto-eddy-current sensor (MECS), to enable surface profiling of dissimilar materials by combining magnetic sensing for ferromagnetic materials and eddy-current sensing for nonferromagnetic materials. The interactions between an electromagnetic field and nonferromagnetic surface and between a magnetic field and ferromagnetic surface were measured by the MECS. The MECS consists of a conic neodymium magnet and a copper coil wound around the magnet. Aluminum and steel surfaces bonded together were prepared to test nondestructive surface profiling of dissimilar materials by the MECS. The interactions between an electromagnetic field and aluminum surface were characterized by monitoring the impedance of the coil, and the interactions between a magnetic field and steel surface were characterized by using a force sensor attached to the neodymium magnet. The magnetic and electromagnetic effects were numerically analyzed by the finite element model. The developed MECS showed the following performance: measurement spot size 5 mm and 10 mm, dynamic measurement bandwidth (eddy-current sensing 1 kHz and magnetic sensing 200 Hz), measuring range 25 mm and 17 mm, polynomial fitting error 0.51% and 0.50%, and resolution 0.655 µm and 0.782 µm for nonferromagnetic and ferromagnetic surface profiling, respectively. This technique was also applied to surface profiling and inspection of the rivet joining sheet materials. The results showed that the MECS is capable of nondestructively monitoring and determining the riveting quality in a fast, large-area, low-cost, convenient manner.

References

1.
Martin
,
Y.
,
Williams
,
C. C.
, and
Wickramasinghe
,
H. K.
,
1987
, “
Atomic Force Microscope—Force Mapping and Profiling on a sub-100-Å Scale
,”
J. Appl. Phys.
,
61
(
10
), pp.
4723
4729
.
2.
Deck
,
L.
, and
De Groot
,
P.
,
1994
, “
High-Speed Noncontact Profiler Based on Scanning White-Light Interferometry
,”
Appl. Opt.
,
33
(
31
), pp.
7334
7338
.
3.
Udupa
,
G.
,
Singaperumal
,
M.
,
Sirohi
,
R. S.
, and
Kothiyal
,
M. P.
,
2000
, “
Characterization of Surface Topography by Confocal Microscopy: I. Principles and the Measurement System
,”
Meas. Sci. Technol.
,
11
(
3
), pp.
305
314
.
4.
Hocken
,
R. J.
, and
Pereira
,
P. H.
2012
,”
Coordinate Measuring Machines and Systems
, Vol.
6
,
CRC Press
,
Boca Raton, FL
.
5.
Keller
,
K.
, and
Bonner
,
B. P.
,
1985
, “
Automatic, Digital System for Profiling Rough Surfaces
,”
Rev. Sci. Instrum.
,
56
(
2
), pp.
330
331
.
6.
Meydan
,
T.
, and
Healey
,
G. W.
,
1992
, “
Linear Variable Differential Transformer (LVDT): Linear Displacement Transducer Utilizing Ferromagnetic Amorphous Metallic Glass Ribbons
,”
Sens. Actuators, A
,
32
(
1–3
), pp.
582
587
.
7.
Hanke
,
R.
,
Fuchs
,
T.
, and
Uhlmann
,
N.
,
2008
, “
X-Ray Based Methods for Non-Destructive Testing and Material Characterization
,”
Nucl. Instrum. Methods Phys. Res. A
,
591
(
1
), pp.
14
18
.
8.
Rathore
,
J. S.
,
Mang
,
C.
,
Vienne
,
C.
,
Quinsat
,
Y.
, and
Tournier
,
C.
,
2021
, “
A Methodology for Computed Tomography-Based Non-Destructive Geometrical Evaluations of Lattice Structures by Holistic Strut Measurement Approach
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
051012
.
9.
Lustig
,
M.
,
Donoho
,
D. L.
,
Santos
,
J. M.
, and
Pauly
,
J. M.
,
2008
, “
Compressed Sensing MRI
,”
IEEE Signal Process. Mag.
,
25
(
2
), pp.
72
82
.
10.
Cawley
,
P.
,
1994
, “
The Rapid Non-Destructive Inspection of Large Composite Structures
,”
Composites
,
25
(
5
), pp.
351
357
.
11.
Yu
,
Z.
,
Fu
,
Y.
,
Jiang
,
L.
, and
Yang
,
F.
,
2021
, “
Detection of Circumferential Cracks in Heat Exchanger Tubes Using Pulsed Eddy Current Testing
,”
NDT&E Int.
,
121
(
1
), p.
102444
.
12.
Ge
,
J.
,
Yusa
,
N.
, and
Fan
,
M.
,
2021
, “
Frequency Component Mixing of Pulsed or Multifrequency Eddy Current Testing for Nonferromagnetic Plate Thickness Measurement Using a Multigene Genetic Programming Algorithm
,”
NDT&E Int.
,
120
(
1
), p.
102423
.
13.
Lu
,
M.
,
Meng
,
X.
,
Huang
,
R.
,
Chen
,
L.
,
Peyton
,
A.
,
Yin
,
W.
, and
Qu
,
Z.
,
2021
, “
Thickness Measurement of Circular Metallic Film Using Single-Frequency Eddy Current Sensor
,”
NDT&E Int.
,
119
(
6
), p.
102420
.
14.
Tian
,
G. Y.
,
Sophian
,
A.
,
Taylor
,
D.
, and
Rudlin
,
J.
,
2005
, “
Multiple Sensors on Pulsed Eddy-Current Detection for 3-D Subsurface Crack Assessment
,”
IEEE Sens. J.
,
5
(
1
), pp.
90
96
.
15.
Dogaru
,
T.
, and
Smith
,
S. T.
,
2001
, “
Giant Magnetoresistance-Based Eddy-Current Sensor
,”
IEEE Trans. Magn.
,
37
(
5
), pp.
3831
3838
.
16.
Shull
,
P. J.
,
Clark
,
A. V.
, and
Auld
,
B. A.
,
1989
, “
Applications of Capacitive Array Sensors to Nondestructive Evaluation
,”
Nondestructive Characterization of Materials
,
Springer
,
Berlin
, pp.
582
589
.
17.
Kumar
,
R.
,
Lang
,
J. H.
,
Hamer
,
T.
, and
Trumper
,
D. L.
,
2016
, “
Towards High-Bandwidth Capacitive Imaging
,”
2016 IEEE SENSORS
,
Orlando, FL
,
Oct. 30–Nov. 2
,
IEEE
,
Silver Spring, MD
, pp.
1
3
.
18.
Martinsen
,
K.
,
Hu
,
S. J.
, and
Carlson
,
B. E.
,
2015
, “
Joining of Dissimilar Materials
,”
CIRP Ann.
,
64
(
2
), pp.
679
699
.
19.
Krishnan
,
P. K.
,
Arunachalam
,
R.
,
Husain
,
A.
, and
Al-Maharbi
,
M.
,
2021
, “
Studies on the Influence of Stirrer Blade Design on the Microstructure and Mechanical Properties of a Novel Aluminum Metal Matrix Composite
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), p.
021008
.
20.
Rojas
,
J. A.
,
Ribeiro
,
B.
, and
Rezende
,
M. C.
,
2021
, “
Curing of Glass Fiber/Epoxy Resin Composites Using Multiwalled Carbon Nanotubes Buckypaper as a Resistive Element
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041007
.
21.
Cheng
,
J.
,
Qiu
,
J.
,
Xu
,
X.
,
Ji
,
H.
,
Takagi
,
T.
, and
Uchimoto
,
T.
,
2016
, “
Research Advances in Eddy Current Testing for Maintenance of Carbon Fiber Reinforced Plastic Composites
,”
Int. J. Appl. Electromagn. Mech.
,
51
(
3
), pp.
261
284
.
22.
Kim
,
D.
,
Kim
,
S.
,
Kong
,
H. J.
, and
Lee
,
Y.
,
2002
, “
Measurement of the Thickness Profile of a Transparent Thin Film Deposited Upon a Pattern Structure With an Acousto-Optic Tunable Filter
,”
Opt. Lett.
,
27
(
21
), pp.
1893
1895
.
23.
Stepinski
,
T.
, and
Jonsson
,
M.
,
2005
, “
Narrowband Ultrasonic Spectroscopy for NDE of Layered Structures
,”
Insight: Non-Destr. Test. Cond. Monit.
,
47
(
4
), pp.
220
225
.
24.
Stepinski
,
T.
,
2006
, “
Assessing Quality of Self-Piercing Rivets
Using
Ultrasound
,”
European Conference on Non-Destructive Testing
,
Berlin, Germany
,
Sept. 26–29
.
25.
Johnson
,
P.
,
Cullen
,
J. D.
,
Al-Shamma'a
,
A. I.
, and
Shaw
,
A.
,
2007
, “
Online Visual Inspection of Self-Piercing Riveting to Determine the Quality of the Mechanical Interlock
,”
J. Phys. Conf. Ser.
,
76
(
1
), p.
012012
.
26.
He
,
X.
,
Pearson
,
I.
, and
Young
,
K.
,
2008
, “
Self-Pierce Riveting for Sheet Materials: State of the Art
,”
J. Mater. Process. Technol.
,
199
(
1–3
), pp.
27
36
.
27.
Li
,
D.
,
Chrysanthou
,
A.
,
Patel
,
I.
, and
Williams
,
G.
,
2017
, “
Self-Piercing Riveting—A Review
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5
), pp.
1777
1824
.
28.
Pappas
,
J. M.
,
Thakur
,
A. R.
,
Leu
,
M. C.
, and
Dong
,
X.
,
2021
, “
A Comparative Study of Pellet-Based Extrusion Deposition of Short, Long, and Continuous Carbon Fiber-Reinforced Polymer Composites for Large-Scale Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071012
.
29.
Gay
,
A.
,
Roche
,
J. M.
,
Lapeyronnie
,
P.
,
Valiorgue
,
F.
, and
Bertrand
,
P.
,
2017
, “
Non-Destructive Inspection of Initial Defects of PA6. 6-GF50/Aluminum Self-Piercing Riveted Joints and Damage Monitoring Under Mechanical Static Loading
,”
Int. J. Damage Mech.
,
26
(
8
), pp.
1127
1146
.
You do not currently have access to this content.