Abstract

Unlocking the potential of additive manufacturing (AM) for space exploration hinges on overcoming key challenges, notably the ability to manufacture or repair parts on-site during exploration missions with consideration of quality, feedstock utilization, and challenges involved in microgravity environments. While there are multiple efforts to investigate the use of existing metal AM processes such as powder bed fusion (PBF), directed energy deposition (DED), and filament-based material extrusion, each process comes with a different set of challenges in space environments. Here, we introduce a new AM method that integrates the benefits of direct ink writing (DIW) to selectively deposit metallic pastes with laser-based processing to locally debind and subsequently melt and fuse metal powder, layer by layer, enabling the manufacturing of AISI 316L samples with densities exceeding 99.0%. The impact of process parameters on single-track dimensions, surface morphology, and porosity was characterized. The efficacy of laser debinding was assessed via secondary-ion mass spectrometry, permitting the carbon content to be estimated at 0.0152%, which is safely below the acceptable limit (0.03 wt%) for AISI 316L.

References

1.
Owens
,
A.
, and
De Weck
,
O.
,
2016
, “
Systems Analysis of In-Space Manufacturing Applications for the International Space Station and the Evolvable Mars Campaign
,”
AIAA SPACE 2016
,
Long Beach, CA
,
Sept. 13–16
, p.
5394
.
2.
Vickers
,
J.
,
2020
, “
NASA's Additive Manufacturing Technology-Driving Exploration
,”
Lunar Excavation, Manufacturing, and Construction Challenge-Ideation Workshop
,
Huntsville, AL
,
Feb. 20
.
3.
Hoffmann
,
M.
, and
Elwany
,
A.
,
2023
, “
In-Space Additive Manufacturing: A Review
,”
ASME J. Manuf. Sci. Eng.
,
145
(
2
), p.
020801
.
4.
Newman
,
D. J.
,
2007
, “
Life in Extreme Environments: How Will Humans Perform on Mars?
,”
Gravitational Space Res.
,
13
(
2
).
5.
Thirsk
,
R.
,
Kuipers
,
A.
,
Mukai
,
C.
, and
Williams
,
D.
,
2009
, “
The Space-Flight Environment: the International Space Station and Beyond
,”
CMAJ
,
180
(
12
), pp.
1216
1220
.
6.
Patane
,
S.
,
Joyce
,
E. R.
,
Snyder
,
M. P.
, and
Shestople
,
P.
,
2017
, “
Archinaut: In-Space Manufacturing and Assembly for Next-Generation Space Habitats
,”
AIAA SPACE and Astronautics Forum and Exposition
,
Orlando, FL
,
Sept. 12–14
, p.
5227
.
7.
Zocca
,
A.
,
Lüchtenborg
,
J.
,
Mühler
,
T.
,
Wilbig
,
J.
,
Mohr
,
G.
,
Villatte
,
T.
,
Léonard
,
F.
,
Nolze
,
G.
,
Sparenberg
,
M.
,
Melcher
,
J.
, et al
,
2019
, “
Enabling the 3D Printing of Metal Components in µ-Gravity
,”
Adv. Mater. Technol.
,
4
(
10
), p.
1900506
.
8.
Milewski
,
J. O.
,
2017
,
Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry
,
Springer
,
New York
.
9.
Leary
,
M.
,
2019
,
Design for Additive Manufacturing
,
Elsevier
,
New York
.
10.
Chua
,
C. K.
,
Wong
,
C. H.
, and
Yeong
,
W. Y.
,
2017
,
Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing
,
Academic Press
,
San Diego, CA
.
11.
Hafley
,
R.
,
Taminger
,
K.
, and
Bird
,
R.
,
2007
, “
Electron Beam Freeform Fabrication in the Space Environment
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11
, p.
1154
.
12.
D’Angelo
,
O.
,
Kuthe
,
F.
,
Liu
,
S.-J.
,
Wiedey
,
R.
,
Bennett
,
J. M.
,
Meisnar
,
M.
,
Barnes
,
A.
,
Kranz
,
W. T.
,
Voigtmann
,
T.
, and
Meyer
,
A.
,
2021
, “
A Gravity-Independent Powder-Based Additive Manufacturing Process Tailored for Space Applications
,”
Addit. Manuf.
,
47
, p.
102349
.
13.
Reitz
,
B.
,
Lotz
,
C.
,
Gerdes
,
N.
,
Linke
,
S.
,
Olsen
,
E.
,
Pflieger
,
K.
,
Sohrt
,
S.
,
Ernst
,
M.
,
Taschner
,
P.
,
Neumann
,
J.
, et al
,
2021
, “
Additive Manufacturing Under Lunar Gravity and Microgravity
,”
Microgravity Sci. Technol.
,
33
(
2
), pp.
1
12
.
14.
Diegel
,
O.
,
Singamneni
,
S.
,
Reay
,
S.
, and
Withell
,
A.
,
2010
, “
Tools for Sustainable Product Design: Additive Manufacturing
,”
J. Sustain. Dev.
,
3
(
3
), pp.
68
75
.
15.
Brandão
,
A. D.
,
Gerard
,
R.
,
Gumpinger
,
J.
,
Beretta
,
S.
,
Makaya
,
A.
,
Pambaguian
,
L.
, and
Ghidini
,
T.
,
2017
, “
Challenges in Additive Manufacturing of Space Parts: Powder Feedstock Cross-Contamination and Its Impact on End Products
,”
Materials
,
10
(
5
), p.
522
.
16.
Santecchia
,
E.
,
Mengucci
,
P.
,
Gatto
,
A.
,
Bassoli
,
E.
,
Defanti
,
S.
, and
Barucca
,
G.
,
2019
, “
Crosscontamination Quantification in Powders for Additive Manufacturing: A Study on Ti6Al-4V and Maraging Steel
,”
Materials
,
12
(
15
), p.
2342
.
17.
Özel
,
T.
,
Shokri
,
H.
, and
Loizeau
,
R.
,
2023
, “
A Review on Wire-fed Directed Energy Deposition Based¨ Metal Additive Manufacturing
,”
J. Manuf. Mater. Process.
,
7
(
1
), p.
45
.
18.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
465
481
.
19.
Yang
,
L.
,
Hsu
,
K.
,
Baughman
,
B.
,
Godfrey
,
D.
,
Medina
,
F.
,
Menon
,
M.
, and
Wiener
,
S.
,
2017
,
Additive Manufacturing of Metals: The Technology, Materials, Design and Production
,
Springer
,
New York
.
20.
Halonen
,
E.
,
Heinonen
,
E.
, and
Mäntysalo
,
M.
,
2013
, “
The Effect of Laser Sintering Process Parameters on Cu Nanoparticle Ink in Room Conditions
,”
Opt. Photonics J.
,
3
(
4
), pp.
40
44
.
21.
Roy
,
N. K.
,
Behera
,
D.
,
Dibua
,
O. G.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2019
, “
A Novel Microscale Selective Laser Sintering (µ-sls) Process for the Fabrication of Microelectronic Parts
,”
Microsyst. Nanoeng.
,
5
(
1
), p.
64
.
22.
Chen
,
X.
,
Zhang
,
M.
,
Zhu
,
J.
,
Tao
,
Z.
, and
Qiu
,
L.
,
2023
, “
Laser Sintering of Cu Nanoparticles Deposited on Ceramic Substrates: Experiments and Modeling
,”
Addit. Manuf.
,
69
, p.
103527
.
23.
Mu
,
S.
,
Hong
,
Y.
,
Huang
,
H.
,
Ishii
,
A.
,
Lei
,
J.
,
Song
,
Y.
,
Li
,
Y.
,
Brinkman
,
K. S.
,
Peng
,
F.
,
Xiao
,
H.
, et al
,
2020
, “
A Novel Laser 3d Printing Method for the Advanced Manufacturing of Protonic Ceramics
,”
Membranes
,
10
(
5
), p.
98
.
24.
Hagen
,
D.
,
Kovar
,
D.
,
Beaman
,
J.
, and
Gammage
,
M.
,
2019
, “
Laser Flash Sintering for Additive Manufacturing of Ceramics
,” Tech. Rep., Army Research Lab, Aberdeen Proving Ground, MD.
25.
de Seijas
,
M. O. V.
,
Bardenhagen
,
A.
,
Pambaguian
,
L.
, and
Stoll
,
E.
,
2023
, “
Laser Debinding of Parts Produced Through Material Extrusion Additive Manufacturing
,”
J. Manuf. Processes
,
88
, pp.
1
11
.
26.
Nielsen
,
L. E.
,
1978
,
Predicting the Properties of Mixtures
,
Marcel Dekker
,
New York
.
27.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
28.
Rosenthal
,
D.
,
1941
, “
Mathematical Theory of Heat Distribution During Welding and Cutting
,”
Weld. J.
,
20
(
5
), pp.
220s
234s
.
29.
Fabbro
,
R.
,
Dal
,
M.
,
Peyre
,
P.
,
Coste
,
F.
,
Schneider
,
M.
, and
Gunenthiram
,
V.
,
2018
, “
Analysis and Possible Estimation of Keyhole Depths Evolution, Using Laser Operating Parameters and Material Properties
,”
J. Laser Appl.
,
30
(
3
), p.
032410
.
30.
Naderi
,
M.
,
Weaver
,
J.
,
Deisenroth
,
D.
,
Iyyer
,
N.
, and
McCauley
,
R.
,
2023
, “
On the Fidelity of the Scaling Laws for Melt Pool Depth Analysis During Laser Powder bed Fusion
,”
Integr. Mater. Manuf. Innov.
,
12
(
1
), pp.
11
26
.
31.
Seede
,
R.
,
Shoukr
,
D.
,
Zhang
,
B.
,
Whitt
,
A.
,
Gibbons
,
S.
,
Flater
,
P.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Karaman
,
I.
,
2020
, “
An Ultra-High Strength Martensitic Steel Fabricated Using Selective Laser Melting Additive Manufacturing: Densification, Microstructure, and Mechanical Properties
,”
Acta Mater.
,
186
, pp.
199
214
.
32.
Hoffmann
,
M.
, and
Elwany
,
A.
,
2023
, “
Material Extrusion Additive Manufacturing of Aisi 316l Pastes
,”
J. Manuf. Processes
,
108
, pp.
238
251
.
33.
Saveth
,
K. J.
, and
Klein
,
S. T.
,
1989
, “
The Progressing Cavity Pump: Principle and Capabilities
,”
SPE Production Operations Symposium
,
Oklahoma City, OK
,
Mar. 13–14
,
Paper No. SPE-18873-MS
.
34.
Prusa Research
,
2022
, “Prusa Slicer,” https://www.prusa3d.com/prusaslicer/, Accessed June 9, 2022.
35.
Zhang
,
B.
,
Seede
,
R.
,
Xue
,
L.
,
Atli
,
K. C.
,
Zhang
,
C.
,
Whitt
,
A.
,
Karaman
,
I.
,
Arroyave
,
R.
, and
Elwany
,
A.
,
2021
, “
An Efficient Framework for Printability Assessment in Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Addit. Manuf.
,
46
, p.
102018
.
36.
Ferreira
,
T.
, and
Rasband
,
W.
,
2012
, “
ImageJ User Guide
,”
ImageJ/Fiji
,
1
, pp.
155
161
.
37.
DebRoy
,
T.
,
Wei
,
H.
,
Zuback
,
J.
,
Mukherjee
,
T.
,
Elmer
,
J.
,
Milewski
,
J.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components– Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
38.
Brennan
,
M.
,
Keist
,
J.
, and
Palmer
,
T.
,
2021
, “
Defects in Metal Additive Manufacturing Processes
,”
J. Mater. Eng. Perform.
,
30
(
7
), pp.
4808
4818
.
39.
Svetlizky
,
D.
,
Das
,
M.
,
Zheng
,
B.
,
Vyatskikh
,
A. L.
,
Bose
,
S.
,
Bandyopadhyay
,
A.
,
Schoenung
,
J. M.
,
Lavernia
,
E. J.
, and
Eliaz
,
N.
,
2021
, “
Directed Energy Deposition (ded) Additive Manufacturing: Physical Characteristics, Defects, Challenges and Applications
,”
Mater. Today
,
49
, pp.
271
295
.
40.
Snell
,
R.
,
Tammas-Williams
,
S.
,
Chechik
,
L.
,
Lyle
,
A.
,
Hernández-Nava
,
E.
,
Boig
,
C.
,
Panoutsos
,
G.
, and
Todd
,
I.
,
2020
, “
Methods for Rapid Pore Classification in Metal Additive Manufacturing
,”
JOM
,
72
(
1
), pp.
101
109
.
41.
Jeon
,
I.
,
Liu
,
P.
, and
Sohn
,
H.
,
2023
, “
Real-Time Melt Pool Depth Estimation and Control During Metal-Directed Energy Deposition for Porosity Reduction
,”
Int. J. Adv. Manuf. Technol.
, pp.
1
16
.
42.
Wolff
,
S. J.
,
Lin
,
S.
,
Faierson
,
E. J.
,
Liu
,
W. K.
,
Wagner
,
G. J.
, and
Cao
,
J.
,
2017
, “
A Framework to Link Localized Cooling and Properties of Directed Energy Deposition (ded)-Processed ti-6al-4v
,”
Acta Mater.
,
132
, pp.
106
117
.
43.
Ronneberg
,
T.
,
Davies
,
C. M.
, and
Hooper
,
P. A.
,
2020
, “
Revealing Relationships Between Porosity, Microstructure and Mechanical Properties of Laser Powder bed Fusion 316l Stainless Steel Through Heat Treatment
,”
Mater. Des.
,
189
, p.
108481
.
44.
Aboulkhair
,
N. T.
,
Everitt
,
N. M.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2014
, “
Reducing Porosity in Alsi10mg Parts Processed by Selective Laser Melting
,”
Addit. Manuf.
,
1
, pp.
77
86
.
45.
Tan
,
Z. E.
,
Pang
,
J. H. L.
,
Kaminski
,
J.
, and
Pepin
,
H.
,
2019
, “
Characterisation of Porosity, Density, and Microstructure of Directed Energy Deposited Stainless Steel Aisi 316l
,”
Addit. Manuf.
,
25
, pp.
286
296
.
46.
Heaney
,
D. F.
,
2018
,
Handbook of Metal Injection Molding
,
Woodhead Publishing
,
Cambridge, UK
.
47.
Agrawal
,
A. K.
,
Rankouhi
,
B.
, and
Thoma
,
D. J.
,
2022
, “
Predictive Process Mapping for Laser Powder bed Fusion: A Review of Existing Analytical Solutions
,”
Curr. Opin. Solid State Mater. Sci.
,
26
(
6
), p.
101024
.
48.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powderbed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.
49.
Naden
,
N.
, and
Prater
,
T.
,
2020
, “
A Review of Welding in Space and Related Technologies
.”
You do not currently have access to this content.