Abstract

Robotic flat-end milling of complex surfaces offers advantages such as high flexibility and high machining efficiency. In the process of planning the toolpath based on the cutter contact path, the robot functional redundancy and the tool orientation need to be solved carefully. This paper presents a posture optimization method for robotic flat-end milling. Taking the weighted sum of the machining width and the toolpath smoothness performance criterion as the objective function, an optimization model considering the joint limits and gouging avoidance is established. An efficient algorithm based on sequential quadratic programming is proposed to solve this nonconvex problem. During the execution of the algorithm, the machining width is efficiently calculated by an iterative method based on conformal geometric algebra, while its derivatives are approximated analytically. Simulations and experiments demonstrate that the presented technique can resolve the tool axis direction and the robot redundancy effectively to increase the machining width and improve the toolpath smoothness, thus reducing the time for machining and improving the surface quality.

References

1.
Xiong
,
G.
,
Ding
,
Y.
, and
Zhu
,
L.
,
2019
, “
Stiffness-Based Pose Optimization of an Industrial Robot for Five-Axis Milling
,”
Rob. Comput. Integr. Manuf.
,
55
, pp.
19
28
.
2.
Liao
,
Z.
,
Wang
,
Q. H.
,
Xie
,
H.
,
Li
,
J. R.
,
Zhou
,
X.
, and
Hua
,
P.
,
2022
, “
Optimization of Robot Posture and Workpiece Setup in Robotic Milling With Stiffness Threshold
,”
IEEE/ASME Trans. Mechatron.
,
27
(
1
), pp.
582
593
.
3.
Chen
,
Q.
,
Zhang
,
C.
,
Hu
,
T.
,
Zhou
,
Y.
,
Ni
,
H.
, and
Xue
,
X.
,
2022
, “
Posture Optimization in Robotic Machining Based on Comprehensive Deformation Index Considering Spindle Weight and Cutting Force
,”
Rob. Comput. Integr. Manuf.
,
74
, p.
102290
.
4.
Léger
,
J.
, and
Angeles
,
J.
,
2016
, “
Off-Line Programming of Six-Axis Robots for Optimum Five-Dimensional Tasks
,”
Mech. Mach. Theory
,
100
, pp.
155
169
.
5.
Lin
,
J.
,
Ye
,
C.
,
Yang
,
J.
,
Zhao
,
H.
,
Ding
,
H.
, and
Luo
,
M.
,
2022
, “
Contour Error-Based Optimization of the End-Effector Pose of a 6 Degree-of-Freedom Serial Robot in Milling Operation
,”
Rob. Comput. Integr. Manuf.
,
73
, p.
102257
.
6.
Peng
,
J. F.
,
Ding
,
Y.
,
Zhang
,
G.
, and
Ding
,
H.
,
2020
, “
Smoothness-Oriented Path Optimization for Robotic Milling Processes
,”
Sci. China Technol. Sci.
,
63
(
9
), pp.
1751
1763
.
7.
Lu
,
Y. A.
,
Tang
,
K.
, and
Wang
,
C. Y.
,
2021
, “
Collision-Free and Smooth Joint Motion Planning for Six-Axis Industrial Robots by Redundancy Optimization
,”
Rob. Comput. Integr. Manuf.
,
68
, p.
102091
.
8.
Lu
,
L.
,
Zhang
,
J.
,
Tian
,
X.
,
Han
,
J.
, and
Wang
,
H.
,
2021
, “
Tool Path Optimization for Robotic Surface Machining by Using Sampling-Based Motion Planning Algorithms
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011002
.
9.
Lu
,
L.
,
Han
,
J.
,
Dong
,
F.
,
Ding
,
Z.
,
Fan
,
C.
,
Chen
,
S.
,
Liu
,
H.
, and
Wang
,
H.
,
2022
, “
Joint-Smooth Toolpath Planning by Optimized Differential Vector for Robot Surface Machining Considering the Tool Orientation Constraints
,”
IEEE/ASME Trans. Mechatron.
,
27
(
4
), pp.
2301
2311
.
10.
Liao
,
Z. Y.
,
Li
,
J. R.
,
Xie
,
H. L.
,
Wang
,
Q. H.
, and
Zhou
,
X. F.
,
2020
, “
Region-Based Toolpath Generation for Robotic Milling of Freeform Surfaces With Stiffness Optimization
,”
Rob. Comput. Integr. Manuf.
,
64
, p.
101953
.
11.
Li
,
Z.
,
Peng
,
F.
,
Yan
,
R.
,
Tang
,
X.
,
Xin
,
S.
, and
Wu
,
J.
,
2022
, “
A Virtual Repulsive Potential Field Algorithm of Posture Trajectory Planning for Precision Improvement in Robotic Multi-Axis Milling
,”
Rob. Comput. Integr. Manuf.
,
74
, p.
102288
.
12.
Vickers
,
G. W.
, and
Quai
,
K. W.
,
1989
, “
Ball-Mills Versus End-Mills for Curved Surface Machining
,”
ASME J. Manuf. Sci. Eng.
,
111
(
1
), pp.
22
26
.
13.
Fard
,
B.
,
and Feng
,
M. J.
, and
Y
,
H.
,
2009
, “
Effect of Tool Tilt Angle on Machining Strip Width in Five-Axis Flat-End Milling of Free-Form Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
44
(
3–4
), pp.
211
222
.
14.
Chiou
,
J. C. J.
, and
Lee
,
Y. S.
,
2005
, “
Optimal Tool Orientation for Five-Axis Tool-end Machining by Swept Envelope Approach
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
810
818
.
15.
Fard
,
B.
,
and Feng
,
M. J.
, and
Y
,
H.
,
2010
, “
Effective Determination of Feed Direction and Tool Orientation in Five-Axis Flat-end Milling
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061011
.
16.
Gong
,
H.
,
Cao
,
L. X.
, and
Liu
,
J.
,
2008
, “
Second Order Approximation of Tool Envelope Surface for 5-Axis Machining With Single Point Contact
,”
Comput.-Aided Des.
,
40
(
5
), pp.
604
615
.
17.
Gong
,
H.
,
Fang
,
F. Z.
,
Hu
,
X. T.
,
Cao
,
L. X.
, and
Liu
,
J.
,
2010
, “
Optimization of Tool Positions Locally Based on the BCELTP for 5-Axis Machining of Free-Form Surfaces
,”
Comput.-Aided Des.
,
42
(
6
), pp.
558
570
.
18.
Fan
,
J.
, and
Ball
,
A.
,
2014
, “
Flat-end Cutter Orientation on a Quadric in Five-Axis Machining
,”
Comput.-Aided Des.
,
53
, pp.
126
138
.
19.
Lu
,
Y.
,
Ding
,
Y.
, and
Zhu
,
L.
,
2016
, “
Simultaneous Optimization of the Feed Direction and Tool Orientation in Five-Axis Flat-end Milling
,”
Int. J. Prod. Res.
,
54
(
15
), pp.
4537
4546
.
20.
Lu
,
Y. A.
,
Ding
,
Y.
, and
Zhu
,
L. M.
,
2017
, “
Tool Path Generation via the Multi-Criteria Optimisation for Flat-end Milling of Sculptured Surfaces
,”
Int. J. Prod. Res.
,
55
(
15
), pp.
4261
4282
.
21.
Liang
,
F.
,
Kang
,
C.
, and
Fang
,
F.
,
2021
, “
A Review on Tool Orientation Planning in Multi-Axis Machining
,”
Int. J. Prod. Res.
,
59
(
18
), pp.
5690
5720
.
22.
Warkentin
,
A.
,
Ismail
,
F.
, and
Bedi
,
S.
,
2000
, “
Comparison Between Multi-Point and Other 5-Axis Tool Positioning Strategies
,”
Int. J. Mach. Tools Manuf.
,
40
(
2
), pp.
185
208
.
23.
Duvedi
,
R. K.
,
Bedi
,
S.
, and
Mann
,
S.
,
2018
, “
An Efficient Multipoint 5-Axis Tool Positioning Method for Tensor Product Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
279
295
.
24.
Gray
,
P. J.
,
Ismail
,
F.
, and
Bedi
,
S.
,
2004
, “
Graphics-Assisted Rolling Ball Method for 5-Axis Surface Machining
,”
Comput.-Aided Des.
,
36
(
7
), pp.
653
663
.
25.
Gray
,
P.
,
Bedi
,
S.
, and
Ismail
,
F.
,
2003
, “
Rolling Ball Method for 5-Axis Surface Machining
,”
Comput.-Aided Des.
,
35
(
4
), pp.
347
357
.
26.
Gray
,
P. J.
,
Bedi
,
S.
, and
Ismail
,
F.
,
2005
, “
Arc-Intersect Method for 5-Axis Tool Positioning
,”
Comput.-Aided Des.
,
37
(
7
), pp.
663
674
.
27.
Li
,
H.
, and
Feng
,
H. Y.
,
2004
, “
Efficient Five-Axis Machining of Free-Form Surfaces With Constant Scallop Height Tool Paths
,”
Int. J. Prod. Res.
,
42
(
12
), pp.
2403
2417
.
28.
Hosseinkhani
,
Y.
,
Akbari
,
J.
, and
Vafaeesefat
,
A.
,
2007
, “
Penetration-Elimination Method for Five-Axis CNC Machining of Sculptured Surfaces
,”
Int. J. Mach. Tools Manuf.
,
47
(
10
), pp.
1625
1635
.
29.
Yoon
,
J. H.
,
Pottmann
,
H.
, and
Lee
,
Y. S.
,
2003
, “
Locally Optimal Cutting Positions for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
,
35
(
1
), pp.
69
81
.
30.
Chiou
,
C. J.
, and
Lee
,
Y. S.
,
1999
, “
A Shape-Generating Approach for Multi-Axis Machining G-Buffer Models
,”
Comput.-Aided Des.
,
31
(
12
), pp.
761
776
.
31.
Gautschi
,
W.
,
2011
,
Numerical Analysis
,
Springer Science & Business Media
,
New York
.
32.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2017
,
Modern Robotics
,
Cambridge University Press
,
Cambridge
.
33.
Pottmann
,
H.
, and
Hofer
,
M.
,
2003
, “Geometry of the Squared Distance Function to Curves and Surfaces,”
Visualization and Mathematics III
,
Springer
,
New York
, pp.
221
242
.
34.
Chen
,
Y.
,
Huang
,
P.
, and
Ding
,
Y.
,
2022
, “
An Analytical Method for Corner Smoothing of Five-Axis Linear Paths Using the Conformal Geometric Algebra
,”
Comput.-Aided Des.
,
153
, p.
103408
.
35.
Kleppe
,
A. L.
,
Tingelstad
,
L.
, and
Egeland
,
O.
,
2019
, “
Coarse Alignment for Model Fitting of Point Clouds Using a Curvature-Based Descriptor
,”
IEEE Trans. Autom. Sci. Eng.
,
16
(
2
), pp.
811
824
.
36.
Kanatani
,
K.
,
2015
,
Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.