Abstract

Vision-based robots have been utilized for pick-and-place operations by their ability to find object poses. As they progress into handling a variety of objects with cluttered state, more flexible and lightweight operations have been presented. In this paper, an autonomous robotic bin-picking platform is proposed. It combines human demonstration with a collaborative robot for the flexibility of the objects and YOLOv5 neural network model for faster object localization without prior computer-aided design models or dataset in the training. After a simple human demonstration of which target object to pick and place, the raw color and depth images were refined, and the one on top of the bin was utilized to create synthetic images and annotations for the YOLOv5 model. To pick up the target object, the point cloud was lifted using the depth data corresponding to the result of the trained YOLOv5 model, and the object pose was estimated by matching them with Iterative Closest Points (ICP) algorithm. After picking up the target object, the robot placed it where the user defined it in the previous human demonstration stage. From the result of experiments with four types of objects and four human demonstrations, it took a total of 0.5 s to recognize the target object and estimate the object pose. The success rate of object detection was 95.6%, and the pick-and-place motion of all the found objects was successful.

References

1.
Fu
,
X. M.
,
Bao
,
Q.
,
Xie
,
H.
, and
Fu
,
X.
,
2021
, “
Diffusion of Industrial Robotics and Inclusive Growth: Labour Market Evidence From Cross Country Data
,”
J. Bus. Res.
,
122
, pp.
670
684
.
2.
Mabkhot
,
M. M.
,
Al-Ahmari
,
A. M.
,
Salah
,
B.
, and
Alkhalefah
,
H.
,
2018
, “
Requirements of the Smart Factory System: A Survey and Perspective
,”
Machines
,
6
(
2
), p.
23
.
3.
Golnabi
,
H.
, and
Asadpour
,
A.
,
2007
, “
Design and Application of Industrial Machine Vision Systems
,”
Rob. Comput. Integr. Manuf.
,
23
(
6
), pp.
630
637
.
4.
Guide Your Robot With Pickit 3D Vision -Pickit 3D—Robot Vision Made Easy
” [Online]. https://www.pickit3d.com/en, Accessed January 9, 2022.
5.
Casado
,
F.
,
Lapido
,
Y. L.
,
Losada
,
D. P.
, and
Santana-Alonso
,
A.
,
2017
, “
Pose Estimation and Object Tracking Using 2D Images
,”
Proc. Manuf.
,
11
, pp.
63
71
.
6.
Skotheim
,
Ø.
,
Lind
,
M.
,
Ystgaard
,
P.
, and
Fjerdingen
,
S. A.
,
2012
, “
A Flexible 3D Object Localization System for Industrial Part Handling
,”
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Algarve, Portugal
,
Oct. 7–12
, pp.
3326
3333
.
7.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp.
779
788
.
8.
Redmon
,
J.
, and
Farhadi
,
A.
,
2018
, “
YOLOv3: An Incremental Improvement
,”
arXiv preprint arXiv:1804.02767
. https://arxiv.org/abs/1804.02767
9.
Blank
,
A.
,
Hiller
,
M.
,
Zhang
,
S.
,
Leser
,
A.
,
Metzner
,
M.
,
Lieret
,
M.
,
Thielecke
,
J.
, and
Franke
,
J.
,
2019
, “
6DoF Pose-Estimation Pipeline for Texture-Less Industrial Components in Bin Picking Applications
,”
Proceedings of the 2019 European Conference on Mobile Robots (ECMR)
,
CIIRC CTU, Prague, Czech Republic
,
Sept. 4–6
, pp.
1
7
.
10.
Yun
,
H.
, and
Jun
,
M. B. G.
,
2022
, “
Immersive and Interactive Cyber-Physical System (I2CPS) and Virtual Reality Interface for Human Involved Robotic Manufacturing
,”
J. Manuf. Syst.
,
62
, pp.
234
248
.
11.
Sahbani
,
A.
,
El-Khoury
,
S.
, and
Bidaud
,
P.
,
2012
, “
An Overview of 3D Object Grasp Synthesis Algorithms
,”
Rob. Auton. Syst.
,
60
(
3
), pp.
326
336
.
12.
Fang
,
W.
,
Chao
,
F.
,
Lin
,
C.-M.
,
Zhou
,
D.
,
Yang
,
L.
,
Chang
,
X.
,
Shen
,
Q.
, and
Shang
,
C.
,
2021
, “
Visual-Guided Robotic Object Grasping Using Dual Neural Network Controllers
,”
IEEE Trans. Ind. Inform.
,
17
(
3
), pp.
2282
2291
.
13.
Balasubramanian
,
R.
,
Xu
,
L.
,
Brook
,
P. D.
,
Smith
,
J. R.
, and
Matsuoka
,
Y.
,
2010
, “
Human-Guided Grasp Measures Improve Grasp Robustness on Physical Robot
,”
Proceedings of the 2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
2294
2301
.
14.
Park
,
J.
,
Jun
,
M. B. G.
, and
Yun
,
H.
,
2022
, “
Development of Robotic Bin Picking Platform With Cluttered Objects Using Human Guidance and Convolutional Neural Network (CNN)
,”
J. Manuf. Syst.
,
63
, pp.
539
549
.
15.
De Coninck
,
E.
,
Verbelen
,
T.
,
Van Molle
,
P.
,
Simoens
,
P.
, and
Dhoedt
,
B.
,
2020
, “
Learning Robots to Grasp by Demonstration
,”
Rob. Auton. Syst.
,
127
, p.
103474
.
16.
Montesano
,
L.
, and
Lopes
,
M.
,
2012
, “
Active Learning of Visual Descriptors for Grasping Using Non-Parametric Smoothed Beta Distributions
,”
Rob. Auton. Syst.
,
60
(
3
), pp.
452
462
.
17.
Mahler
,
J.
,
Matl
,
M.
,
Satish
,
V.
,
Danielczuk
,
M.
,
DeRose
,
B.
,
McKinley
,
S.
, and
Goldberg
,
K.
,
2019
, “
Learning Ambidextrous Robot Grasping Policies
,”
Sci. Rob.
18.
Jo
,
H.-J.
,
Min
,
C.-H.
, and
Song
,
J.-B.
,
2018
, “
Bin Picking System Using Object Recognition Based on Automated Synthetic Dataset Generation
,”
Proceedings of the 2018 15th International Conference on Ubiquitous Robots (UR)
,
Honolulu, HI
,
June 26–30
, pp.
886
890
.
19.
Metzner
,
M.
,
Albrecht
,
F.
,
Fiegert
,
M.
,
Bauer
,
B.
,
Martin
,
S.
,
Karlidag
,
E.
,
Blank
,
A.
, and
Franke
,
J.
,
2021
, “
Virtual Training and Commissioning of Industrial Bin Picking Systems Using Synthetic Sensor Data and Simulation
,”
Int. J. Comput. Integr. Manuf.
,
0
(
0
), pp.
1
10
.
20.
Kroemer
,
O. B.
,
Detry
,
R.
,
Piater
,
J.
, and
Peters
,
J.
,
2010
, “
Combining Active Learning and Reactive Control for Robot Grasping
,”
Rob. Auton. Syst.
,
58
(
9
), pp.
1105
1116
.
21.
Yao
,
J.
,
Liu
,
Y.
,
Lin
,
T.
,
Ping
,
X.
,
Xu
,
H.
,
Wang
,
W.
,
Xiao
,
Y.
,
Zhang
,
L.
,
Wang
,
L.
, et al
,
2021
, “
Robotic Grasping Training Using Deep Reinforcement Learning With Policy Guidance Mechanism
,”
ASME International Manufacturing Science and Engineering Conference
,
Virtual, Online
, p. V002T07A015.
22.
Finn
,
C.
,
Abbeel
,
P.
, and
Levine
,
S.
,
2017
, “
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
,”
Proceedings of the 34th International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6–11
, PMLR, pp.
1126
1135
.
23.
Weiss
,
K.
,
Khoshgoftaar
,
T. M.
, and
Wang
,
D.
,
2016
, “
A Survey of Transfer Learning
,”
J. Big Data
,
3
(
1
), p.
9
.
24.
Kleeberger
,
K.
,
Völk
,
M.
,
Moosmann
,
M.
,
Thiessenhusen
,
E.
,
Roth
,
F.
,
Bormann
,
R.
, and
Huber
,
M. F.
,
2020
, “
Transferring Experience From Simulation to the Real World for Precise Pick-And-Place Tasks in Highly Cluttered Scenes
,”
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV (Virtual)
, pp.
9681
9688
.
25.
Zheng
,
P.
,
Li
,
S.
,
Xia
,
L.
,
Wang
,
L.
, and
Nassehi
,
A.
,
2022
, “
A Visual Reasoning-Based Approach for Mutual-Cognitive Human-Robot Collaboration
,”
CIRP Ann.
,
71
(
1
), pp.
377
380
.
26.
Li
,
S.
,
Zheng
,
P.
,
Liu
,
S.
,
Wang
,
Z.
,
Wang
,
X. V.
,
Zheng
,
L.
, and
Wang
,
L.
,
2023
, “
Proactive Human–Robot Collaboration: Mutual-Cognitive, Predictable, and Self-Organising Perspectives
,”
Rob. Comput. Integr. Manuf.
,
81
, p.
102510
.
27.
Du
,
G.
,
Wang
,
K.
,
Lian
,
S.
, and
Zhao
,
K.
,
2021
, “
Vision-Based Robotic Grasping From Object Localization, Object Pose Estimation to Grasp Estimation for Parallel Grippers: A Review
,”
Artif. Intell. Rev.
,
54
(
3
), pp.
1677
1734
.
28.
Tegin
,
J.
,
Ekvall
,
S.
,
Kragic
,
D.
,
Wikander
,
J.
, and
Iliev
,
B.
,
2009
, “
Demonstration-Based Learning and Control for Automatic Grasping
,”
Intell. Serv. Robot.
,
2
(
1
), pp.
23
30
.
29.
Miller
,
A. T.
,
Knoop
,
S.
,
Christensen
,
H. I.
, and
Allen
,
P. K.
,
2003
, “
Automatic Grasp Planning Using Shape Primitives
,”
Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422)
,
Taipei, Taiwan
,
Sept. 14–19
, Vol. 2, pp.
1824
1829
.
30.
Morales
,
A.
,
Chinellato
,
E.
,
Fagg
,
A. H.
, and
Del Pobil
,
A. P.
,
2004
, “
Using Experience for Assessing Grasp Reliability
,”
Int. J. Humanoid Rob.
,
1
(
4
), pp.
671
691
.
31.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
.
32.
Ikeuchi
,
K.
,
1987
, “
Generating an Interpretation Tree From a CAD Model for 3D-Object Recognition in Bin-Picking Tasks
,”
Int. J. Comput. Vis.
,
1
(
2
), pp.
145
165
.
33.
Bay
,
H.
,
Tuytelaars
,
T.
, and
Van Gool
,
L.
,
2006
, “SURF: Speeded Up Robust Features,”
Computer Vision—ECCV 2006
,
A
Leonardis
,
H
Bischof
, and
A
Pinz
, eds.,
Springer
,
Berlin/ Heidelberg
, pp.
404
417
.
34.
Rublee
,
E.
,
Rabaud
,
V.
,
Konolige
,
K.
, and
Bradski
,
G.
,
2011
, “
ORB: An Efficient Alternative to SIFT or SURF
,”
Proceedings of the 2011 International Conference on Computer Vision
,
Barcelona, Spain
,
Nov. 6–13
, pp.
2564
2571
.
35.
Zou
,
Z.
,
Shi
,
Z.
,
Guo
,
Y.
, and
Ye
,
J.
,
2019
, “
Object Detection in 20 Years: A Survey
.”
36.
Hinterstoisser
,
S.
,
Cagniart
,
C.
,
Ilic
,
S.
,
Sturm
,
P.
,
Navab
,
N.
,
Fua
,
P.
, and
Lepetit
,
V.
,
2012
, “
Gradient Response Maps for Real-Time Detection of Textureless Objects
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
34
(
5
), pp.
876
888
.
37.
Xiang
,
Y.
,
Schmidt
,
T.
,
Narayanan
,
V.
, and
Fox
,
D.
,
2018
, “
PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
.”.
38.
Tekin
,
B.
,
Sinha
,
S. N.
, and
Fua
,
P.
,
2018
, “
Real-Time Seamless Single Shot 6d Object Pose Prediction
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
292
301
.
39.
Liu
,
F.
,
Fang
,
P.
,
Yao
,
Z.
,
Fan
,
R.
,
Pan
,
Z.
,
Sheng
,
W.
, and
Yang
,
H.
,
2019
, “
Recovering 6D Object Pose From RGB Indoor Image Based on Two-Stage Detection Network With Multi-Task Loss
,”
Neurocomputing
,
337
, pp.
15
23
.
40.
Do
,
T.-T.
,
Cai
,
M.
,
Pham
,
T.
, and
Reid
,
I.
,
2018
, “
Deep-6DPose: Recovering 6D Object Pose from a Single RGB Image
,”
arXiv preprint arXiv:1802.10367
. https://arxiv.org/abs/1802.10367
41.
Gao
,
G.
,
Lauri
,
M.
,
Wang
,
Y.
,
Hu
,
X.
,
Zhang
,
J.
, and
Frintrop
,
S.
,
2020
, “
6D Object Pose Regression via Supervised Learning on Point Clouds
,”
Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
3643
3649
.
42.
Chen
,
W.
,
Jia
,
X.
,
Chang
,
H. J.
,
Duan
,
J.
, and
Leonardis
,
A.
,
2020
, “
G2L-Net: Global to Local Network for Real-Time 6D Pose Estimation With Embedding Vector Features
,”
arXiv preprint arXiv:1802.10367
.
43.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
Method for Registration of 3-D Shapes
,”
Sensor Fusion IV: Control Paradigms and Data Structures
,
Boston, MA
, SPIE, pp.
586
606
.
44.
Hanh
,
L. D.
, and
Hieu
,
K. T. G.
,
2021
, “
3D Matching by Combining CAD Model and Computer Vision for Autonomous Bin Picking
,”
Int. J. Interact. Des. Manuf. IJIDeM
,
15
(
2
), pp.
239
247
.
45.
Kushida
,
D.
,
Nakamura
,
M.
,
Goto
,
S.
, and
Kyura
,
N.
,
2001
, “
Human Direct Teaching of Industrial Articulated Robot Arms Based on Force-Free Control
,”
Artif. Life Rob.
,
5
(
1
), pp.
26
32
.
46.
Feng
,
Y.
,
Diao
,
W.
,
Sun
,
X.
,
Yan
,
M.
, and
Gao
,
X.
,
2019
, “
Towards Automated Ship Detection and Category Recognition From High-Resolution Aerial Images
,”
Remote Sens.
,
11
(
16
), p.
1901
.
47.
Redmon
,
J.
, and
Angelova
,
A.
,
2015
, “
Real-Time Grasp Detection Using Convolutional Neural Networks
,”
Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
1316
1322
.
48.
Yang
,
X.
, and
Yan
,
J.
,
2020
, “Arbitrary-Oriented Object Detection With Circular Smooth Label,”
Computer Vision—ECCV 2020
,
A.
Vedaldi
,
H.
Bischof
,
T.
Brox
, and
J.-M.
Frahm
, eds.,
Springer International Publishing
,
Cham
, pp.
677
694
.
49.
Torres
,
P.
,
Arents
,
J.
,
Marques
,
H.
, and
Marques
,
P.
,
2022
, “
Bin-Picking Solution for Randomly Placed Automotive Connectors Based on Machine Learning Techniques
,”
Electronics
,
11
(
3
), p.
476
.
50.
Jocher
,
G.
,
Chaurasia
,
A.
,
Stoken
,
A.
,
Borovec
,
J.
,
TaoXie
,
Fang
,
J.
,
Michael
,
K.
,
Lorna
,
V.
, et al
,
2022
, “
Ultralytics/Yolov5: V6.1—TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference
,”
Zenodo
.
51.
Hodaň
,
T.
,
Sundermeyer
,
M.
,
Drost
,
B.
,
Labbé
,
Y.
,
Brachmann
,
E.
,
Michel
,
F.
,
Rother
,
C.
, and
Matas
,
J.
,
2020
, “BOP Challenge 2020 on 6D Object Localization,”
Computer Vision—ECCV 2020 Workshops
,
A.
Bartoli
, and
A.
Fusiello
, eds.,
Springer International Publishing
,
Cham
, pp.
577
594
.
52.
Bradski
,
G.
, and
Kaehler
,
A.
,
2008
,
Learning OpenCV: Computer Vision With the OpenCV Library
,
O’Reilly Media, Inc
,
Sebastopol, CA
.
53.
Zhou
,
Q.-Y.
,
Park
,
J.
, and
Koltun
,
V.
,
2018
, “
Open3D: A Modern Library for 3D Data Processing
,”
arXiv preprint arXiv:1801.09847
. https://arxiv.org/abs/1801.09847
54.
Crick
,
C.
,
Jay
,
G.
,
Osentoski
,
S.
,
Pitzer
,
B.
, and
Jenkins
,
O. C.
,
2017
, “Rosbridge: ROS for Non-ROS Users,”
Robotics Research: The 15th International Symposium ISRR
,
H. I.
Christensen
, and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham
, pp.
493
504
.
55.
Lin
,
Q.
,
Ye
,
G.
,
Wang
,
J.
, and
Liu
,
H.
,
2022
, “
RoboFlow: A Data-Centric Workflow Management System for Developing AI-Enhanced Robots
,”
Proceedings of the 5th Conference on Robot Learning
,
London, UK
, PMLR, pp.
1789
1794
.
56.
Cordeiro
,
A.
,
Rocha
,
L. F.
,
Costa
,
C.
,
Costa
,
P.
, and
Silva
,
M. F.
,
2022
, “
Bin Picking Approaches Based on Deep Learning Techniques: A State-of-the-Art Survey
,”
Proceedings of the 2022 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC)
,
Santa Maria da Feira, Portugal
,
Apr. 29–30
, pp.
110
117
.
57.
Lee
,
Y.
,
Lee
,
S.
, and
Kim
,
D.
,
2022
, “
Mechanical Parts Picking Through Geometric Properties Determination Using Deep Learning
,”
Int. J. Adv. Rob. Syst.
,
19
(
1
), p.
17298814221074532
.
58.
Do
,
H. M.
,
Park
,
C.
,
Choi
,
T. Y.
, and
Kyung
,
J. H.
,
2013
, “
Design and Control of Dual-Arm Robot for Cell Manufacturing Process
,”
Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation
,
Takamatsu, Japan
,
Aug. 4–7
, pp.
1419
1423
.
You do not currently have access to this content.