Abstract

Human–robot collaboration has become a hotspot in smart manufacturing, and it also has shown the potential for surface defect inspection. The robot can release workload, while human collaboration can help to recheck the uncertain defects. However, the human–robot collaboration-based defect inspection can be hardly realized unless some bottlenecks have been solved, and one of them is that the current methods cannot decide which samples to be rechecked, and the workers can only recheck all of the samples to improve inspection results. To overcome this problem and realize the human–robot collaboration-based surface defect inspection, a two-stage Transformer model with focal loss is proposed. The proposed method divides the traditional inspection process into detection and recognition, designs a collaboration rule to allow workers to collaborate and recheck the defects, and introduces the focal loss into the model to improve the recognition results. With these improvements, the proposed method can collaborate with workers by rechecking the defects and improve surface quality. The experimental results on the public dataset have shown the effectiveness of the proposed method, the accuracies are significantly improved by the human collaboration, which are 1.70%∼4.18%. Moreover, the proposed method has been implemented into a human–robot collaboration-based prototype to inspect the carton surface defects, and the results also verify the effectiveness. Meanwhile, the proposed method has a good ability for visualization to find the defect area, and it is also conducive to defect analysis and rechecking.

References

1.
Gao
,
Y.
,
Gao
,
L.
,
Li
,
X.
, and
Cao
,
S.
,
2022
, “
A Hierarchical Training-Convolutional Neural Network for Imbalanced Fault Diagnosis in Complex Equipment
,”
IEEE Trans. Ind. Inf.
,
18
(
11
), pp.
8138
8145
.
2.
Gao
,
Y.
,
Gao
,
L.
, and
Li
,
X.
,
2023
, “
A Hierarchical Training-Convolutional Neural Network With Feature Alignment for Steel Surface Defect Recognition
,”
Rob. Comput. Integr. Manuf.
,
81
, p.
102507
.
3.
He
,
Y.
,
Song
,
K.
,
Meng
,
Q.
, and
Yan
,
Y.
,
2020
, “
An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features
,”
IEEE Trans. Instrum. Meas.
,
69
(
4
), pp.
1493
1504
.
4.
Zhang
,
Y.
,
You
,
D.
,
Gao
,
X.
,
Zhang
,
N.
, and
Gao
,
P. P.
,
2019
, “
Welding Defects Detection Based on Deep Learning With Multiple Optical Sensors During Disk Laser Welding of Thick Plates
,”
J. Manuf. Syst.
,
51
, pp.
87
94
.
5.
Wen
,
L.
,
Wang
,
Y.
, and
Li
,
X.
,
2022
, “
A New Cycle-Consistent Adversarial Networks With Attention Mechanism for Surface Defect Classification With Small Samples
,”
IEEE Trans. Ind. Inf.
,
18
(
12
), pp.
8988
8998
.
6.
Wang
,
L.
,
2019
, “
From Intelligence Science to Intelligent Manufacturing
,”
Engineering
,
5
(
4
), pp.
615
618
.
7.
Liu
,
S.
,
Wang
,
L.
, and
Vincent Wang
,
X.
,
2022
, “
Multimodal Data-Driven Robot Control for Human–Robot Collaborative Assembly
,”
ASME J. Manuf. Sci. Eng.
,
144
(
5
), p.
051012
.
8.
Xu
,
X.
,
Lu
,
Y.
,
Vogel-Heuser
,
B.
, and
Wang
,
L.
,
2021
, “
Industry 4.0 and Industry 5.0—Inception, Conception and Perception
,”
J. Manuf. Syst.
,
61
, pp.
530
535
.
9.
Piacenza
,
J. R.
,
Faller
,
K. J.
,
Regez
,
B.
, and
Gomez
,
L.
,
2021
, “
Verification of Numerically Controlled Manufacturing Processes, Toward Identifying Cyber-Physical Threats
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
091014
.
10.
Luo
,
Q.
,
Sun
,
Y.
,
Li
,
P.
,
Simpson
,
O.
,
Tian
,
L.
, and
He
,
Y.
,
2019
, “
Generalized Completed Local Binary Patterns for Time-Efficient Steel Surface Defect Classification
,”
IEEE Trans. Instrum. Meas.
,
68
(
3
), pp.
667
679
.
11.
Tan
,
A.
,
Zhou
,
G.
, and
He
,
M.
,
2021
, “
Surface Defect Identification of Citrus Based on KF-2D-Renyi and ABC-SVM
,”
Multimed. Tools Appl.
,
80
(
6
), pp.
9109
9136
.
12.
Gao
,
Y.
,
Gao
,
L.
,
Li
,
X.
, and
Wang
,
X.
,
2020
, “
A Multilevel Information Fusion-Based Deep Learning Method for Vision-Based Defect Recognition
,”
IEEE Trans. Instrum. Meas.
,
69
(
7
), pp.
3980
3991
.
13.
Zhang
,
H.
,
Jiang
,
L.
, and
Li
,
C.
,
2021
, “
CS-ResNet: Cost-Sensitive Residual Convolutional Neural Network for PCB Cosmetic Defect Detection
,”
Expert Syst. Appl.
,
185
, p.
115673
.
14.
Liu
,
Z.
,
Lin
,
Y.
,
Cao
,
Y.
,
Hu
,
H.
,
Wei
,
Y.
,
Zhang
,
Z.
,
Lin
,
S.
, and
Guo
,
B.
,
2021
, “
Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Montreal, Canada
,
Oct. 10–17
.
15.
You
,
D.
,
Gao
,
X.
, and
Katayama
,
S.
,
2014
, “
Multisensor Fusion System for Monitoring High-Power Disk Laser Welding Using Support Vector Machine
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1285
1295
.
16.
Xiao
,
M.
,
Jiang
,
M.
,
Li
,
G.
,
Xie
,
L.
, and
Yi
,
L.
,
2017
, “
An Evolutionary Classifier for Steel Surface Defects With Small Sample Set
,”
Eurasip J. Image Video Proces.
,
2017
(
1
), p.
48
.
17.
Wang
,
Y.
,
Sun
,
W.
,
Jin
,
J. J.
,
Kong
,
Z. J.
, and
Yue
,
X.
,
2023
, “
MVGCN: Multi-View Graph Convolutional Neural Network for Surface Defect Identification Using Three-Dimensional Point Cloud
,”
ASME J. Manuf. Sci. Eng.
,
145
(
3
), p.
031004
.
18.
Liu
,
Y.
,
Yuan
,
Y.
,
Balta
,
C.
, and
Liu
,
J.
,
2020
, “
A Light-Weight Deep-Learning Model With Multi-Scale Features for Steel Surface Defect Classification
,”
Materials
,
13
(
20
), p.
4629
.
19.
Surana
,
A.
,
Lynch
,
M. E.
,
Nassar
,
A. R.
,
Ojard
,
G. C.
,
Fisher
,
B. A.
,
Corbin
,
D.
, and
Overdorff
,
R.
,
2023
, “
Flaw Detection in Multi-Laser Powder Bed Fusion Using In Situ Coaxial Multi-Spectral Sensing and Deep Learning
,”
ASME J. Manuf. Sci. Eng.
,
145
(
5
), p.
051005
.
20.
Hao
,
R.
,
Lu
,
B.
,
Cheng
,
Y.
,
Li
,
X.
, and
Huang
,
B.
,
2021
, “
A Steel Surface Defect Inspection Approach Towards Smart Industrial Monitoring
,”
J. Intell. Manuf.
,
32
(
7
), pp.
1833
1843
.
21.
Wang
,
J.
,
Gao
,
P.
,
Zhang
,
J.
,
Lu
,
C.
, and
Shen
,
B.
,
2023
, “
Knowledge Augmented Broad Learning System for Computer Vision Based Mixed-Type Defect Detection in Semiconductor Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
81
, p.
102513
.
22.
Zhang
,
J.
,
Su
,
H.
,
Zou
,
W.
,
Gong
,
X.
,
Zhang
,
Z.
, and
Shen
,
F.
,
2021
, “
CADN: A Weakly Supervised Learning-Based Category-Aware Object Detection Network for Surface Defect Detection
,”
Pattern Recognit.
,
109
, p.
107571
.
23.
Iwahori
,
Y.
,
Takada
,
Y.
,
Shiina
,
T.
,
Adachi
,
Y.
,
Bhuyan
,
M. K.
, and
Kijsirikul
,
B.
,
2018
, “
Defect Classification of Electronic Board Using Dense SIFT and CNN
,”
Procedia Comput. Sci.
,
126
, pp.
1673
1682
.
24.
Xie
,
L.
,
Xiang
,
X.
,
Xu
,
H.
,
Wang
,
L.
,
Lin
,
L.
, and
Yin
,
G.
,
2021
, “
FFCNN: A Deep Neural Network for Surface Defect Detection of Magnetic Tile
,”
IEEE Trans. Ind. Electron.
,
68
(
4
), pp.
3506
3516
.
25.
Yu
,
J.
,
2019
, “
Enhanced Stacked Denoising Autoencoder-Based Feature Learning for Recognition of Wafer Map Defects
,”
IEEE Trans. Semicond. Manuf.
,
32
(
4
), pp.
613
624
.
26.
Lin
,
Q.
,
Zhou
,
J.
,
Ma
,
Q.
,
Ma
,
Y.
,
Kang
,
L.
, and
Wang
,
J.
,
2022
, “
EMRA-Net: A Pixel-Wise Network Fusing Local and Global Features for Tiny and Low-Contrast Surface Defect Detection
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
14
.
27.
Cheng
,
M.
,
Xu
,
C.
,
Wang
,
J.
,
Zhang
,
W.
,
Zhou
,
Y.
, and
Zhang
,
J.
,
2022
, “
MicroCrack-Net: A Deep Neural Network With Outline Profile-Guided Feature Augmentation and Attention-Based Multiscale Fusion for MicroCrack Detection of Tantalum Capacitors
,”
IEEE Trans. Aerosp. Electron. Syst.
,
58
(
6
), pp.
5141
5152
.
28.
Yun
,
J. P.
,
Shin
,
W. C.
,
Koo
,
G.
,
Kim
,
M. S.
,
Lee
,
C.
, and
Lee
,
S. J.
,
2020
, “
Automated Defect Inspection System for Metal Surfaces Based on Deep Learning and Data Augmentation
,”
J. Manuf. Syst.
,
55
, pp.
317
324
.
29.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
, IEEE, pp.
770
778
.
30.
Chollet
,
F.
,
2017
, “
Xception: Deep Learning With Depthwise Separable Convolutions
,”
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
, IEEE, pp.
1800
1807
.
31.
Wu
,
M.-J.
,
Jang
,
J.-S. R.
, and
Chen
,
J.-L.
,
2015
, “
Wafer Map Failure Pattern Recognition and Similarity Ranking for Large-Scale Data Sets
,”
IEEE Trans. Semicond. Manuf.
,
28
(
1
), pp.
1
12
.
32.
Huang
,
G.
,
Liu
,
Z.
,
Van Der Maaten
,
L.
, and
Weinberger
,
K. Q.
,
2017
, “
Densely Connected Convolutional Networks
,”
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
, IEEE, pp.
2261
2269
.
33.
Tsai
,
T.-H.
, and
Lee
,
Y.-C.
,
2020
, “
A Light-Weight Neural Network for Wafer Map Classification Based on Data Augmentation
,”
IEEE Trans. Semicond. Manuf.
,
33
(
4
), pp.
663
672
.
34.
Saqlain
,
M.
,
Jargalsaikhan
,
B.
, and
Lee
,
J. Y.
,
2019
, “
A Voting Ensemble Classifier for Wafer Map Defect Patterns Identification in Semiconductor Manufacturing
,”
IEEE Trans. Semicond. Manuf.
,
32
(
2
), pp.
171
182
.
35.
Ishida
,
T.
,
Nitta
,
I.
,
Fukuda
,
D.
, and
Kanazawa
,
Y.
,
2019
, “
Deep Learning-Based Wafer-Map Failure Pattern Recognition Framework
,”
Proceedings of the 20th International Symposium on Quality Electronic Design (ISQED)
,
Santa Clara, CA
,
Mar. 6–7
, IEEE, pp.
291
297
.
36.
Yu
,
J.
,
Shen
,
Z.
, and
Zheng
,
X.
,
2021
, “
Joint Feature and Label Adversarial Network for Wafer Map Defect Recognition
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
3
), pp.
1341
1353
.
37.
Yu
,
J.
, and
Liu
,
J.
,
2022
, “
Multiple Granularities Generative Adversarial Network for Recognition of Wafer Map Defects
,”
IEEE Trans. Ind. Inf.
,
18
(
3
), pp.
1674
1683
.
You do not currently have access to this content.