Abstract

Cutting deformation and cracks are common problems during the machining of precise polymer parts. This paper aims to explore the effects of different conditions on the contour profile of machined surfaces and tool vibration. Turning experiments of polysulfone (PSU) were performed under three conditions: dry, conventional flood cooling, and indirect cryogenic cooling. Then, the formation mechanism of machined surfaces' contour profile under different cutting conditions was clarified by the Eyring equation from the perspective of molecular chains relaxation time. Furthermore, extension models of crazing and cracks were proposed through the microscopic morphology of machined surfaces and the discriminant formula of crazing generation to explain the differences in tool vibration. The results indicated that the indirect cryogenic cooling condition with the internally cooled cutting tool could significantly improve the machinability of polysulfone, which has an excellent performance on the contour profile of machined surfaces with and the inhibition of crazing. Compared with dry and conventional flood cooling, indirect cryogenic cooling could reduce the mean of the Contour profile (Ra) by 40.3% and 30.1% and the machining accuracy error by 41% and 83%. The indirect cryogenic cooling method proposed in this work provides a reference for the cryogenic machining for polymers.

References

1.
Xie
,
Y.
,
Ye
,
F.
,
Chen
,
W.
,
Tang
,
J.
, and
Liu
,
P.
,
2020
, “
Preparation of High-Strength and Lightweight Microcellular Polysulfone Foam With a Segregated CNT Network for Excellent Electromagnetic Shielding
,”
RSC Adv.
,
10
(
20
), pp.
11994
12003
.
2.
Dickinson
,
B. L.
,
1989
, “
UDEL Polysulfone for Medical Applications
,”
J. Biomater. Appl.
,
3
(
4
), pp.
605
634
.
3.
Firouzjaei
,
M. D.
,
Seyedpour
,
S. F.
,
Aktij
,
S. A.
,
Giagnorio
,
M.
,
Bazrafshan
,
N.
,
Mollahosseini
,
A.
,
Samadi
,
F.
, et al
,
2020
, “
Recent Advances in Functionalized Polymer Membranes for Biofouling Control and Mitigation in Forward Osmosis
,”
J. Membr. Sci..
,
596
(
2019
), p.
117604
.
4.
Sudo
,
Y. H.
,
Kaneko
,
K.
, and
Yamasaki
,
J.
,
2015
, “
T Development of Method of Reducing Groove Bottom Roughness in the Microgroove Processing of Polysulfone Materials
,”
Proceedings of International Conference on Leading Edge Manufacturing in 21st Century
,
Kyoto, Japan
,
Oct. 18
.
5.
Yu
,
L.
,
Zhao
,
D.
, and
Wang
,
W.
,
2019
, “
Mechanical Properties and Long-Term Durability of Recycled Polysulfone Plastic
,”
Waste Manag.
,
84
, pp.
402
412
.
6.
Mao
,
X.
,
Yuk
,
H.
, and
Zhao
,
X.
,
2020
, “
Hydration and Swelling of Dry Polymers for Wet Adhesion
,”
J. Mech. Phys. Solids.
,
137
, p.
103863
.
7.
Zhao
,
Qianyi
,
2014
, “
Application of Twin-Tool Cutting in Machining Thin-Walled Insulating Parts With Rotating Body
,”
Metal Working Metal Cutting
,
6
, pp.
50
52
.
8.
Lu
,
Jianjun
,
Zeng
,
Zhaoyong
,
Wang
,
Yong
,
Zhu
,
Gang
, and
Cao
,
Xiaoping
,
2014
, “
Study on Cracking Analysis and Technological Improvement of Polysulfone Antenna Protective Cover
,”
Aerosp. Manuf. Technol.
,
2
, pp.
33
35
.
9.
Wang
,
Y.
,
Dai
,
M.
,
Liu
,
K.
,
Liu
,
J.
,
Han
,
L.
, and
Liu
,
H.
,
2020
, “
Research on Surface Heat Transfer Mechanism of Liquid Nitrogen Jet Cooling in Cryogenic Machining
,”
Appl. Therm. Eng..
,
179
, p.
115607
.
10.
Jawahir
,
I. S.
,
Attia
,
H.
,
Biermann
,
D.
,
Duflou
,
J.
,
Klocke
,
F.
,
Meyer
,
D.
,
Newman
,
S. T.
, et al
,
2016
, “
Cryogenic Manufacturing Processes
,”
CIRP Ann.
,
65
(
2
), pp.
713
736
.
11.
Yildiz
,
Y.
, and
Nalbant
,
M.
,
2008
, “
A Review of Cryogenic Cooling in Machining Processes
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
947
964
.
12.
Wang
,
Y.
,
Han
,
L.
,
Liu
,
K.
,
Gan
,
Y.
,
Dai
,
M.
, and
Liu
,
H.
,
2021
, “
Optimization of Jet Parameters for Minimizing Surface Roughness in Cryogenic Milling of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
051011
.
13.
Chaabani
,
S.
,
Arrazola
,
P. J.
,
Ayed
,
Y.
,
Madariaga
,
A.
,
Tidu
,
A.
, and
Germain
,
G.
,
2020
, “
Comparison Between Cryogenic Coolants Effect on Tool Wear and Surface Integrity in Finishing Turning of Inconel 718
,”
J. Mater. Process. Technol.
,
285
, p.
116780
.
14.
Pu
,
Z.
,
Outeiro
,
J. C.
,
Batista
,
A. C.
,
Dillon
,
O. W.
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2012
, “
Enhanced Surface Integrity of AZ31B Mg Alloy by Cryogenic Machining Towards Improved Functional Performance of Machined Components
,”
Int. J. Mach. Tools Manuf.
,
56
, pp.
17
27
.
15.
Zindani
,
D.
, and
Kumar
,
K.
,
2020
, “
A Brief Review on Cryogenics in Machining Process
,”
SN Appl. Sci.
,
2
(
6
), pp.
1
10
.
16.
Kakinuma
,
Y.
,
Kidani
,
S.
, and
Aoyama
,
T.
,
2012
, “
Ultra-Precision Cryogenic Machining of Viscoelastic Polymers
,”
CIRP Ann.
,
61
(
1
), pp.
79
82
.
17.
Khoran
,
M.
,
Amirabadi
,
H.
, and
Azarhoushang
,
B.
,
2020
, “
The Effects of Cryogenic Cooling on the Grinding Process of Polyether Ether Ketone (PEEK)
,”
J. Manuf. Processes.
,
56
, pp.
1075
1087
.
18.
Varga
,
G.
,
Ravai-Nagy
,
S.
, and
Szigeti
,
F.
,
2018
, “
Examination of Surface Roughness of Holes of Plastic Parts Drilled Under Cryogenic Cooling Conditions
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
448
, pp.
012065
.
19.
Gan
,
Y.
,
Wang
,
Y.
,
Liu
,
K.
,
Han
,
L.
,
Luo
,
Q.
, and
Liu
,
H.
,
2020
, “
A Novel and Effective Method for Cryogenic Milling of Polytetrafluoroethylene
,”
Int. J. Adv. Manuf. Technol.
,
112
(
3–4
), pp.
969
976
.
20.
Dhokia
,
V. G.
,
Newman
,
S. T.
,
Crabtree
,
P.
, and
Ansell
,
M. P.
,
2010
, “
A Methodology for the Determination of Foamed Polymer Contraction Rates as a Result of Cryogenic CNC Machining
,”
Robot. Comput. Integ. Manuf.
,
26
(
6
), pp.
665
670
.
21.
Song
,
K.
,
Gang
,
M. G.
,
Jun
,
M. B. G.
, and
Min
,
B.-K.
,
2017
, “
Cryogenic Machining of PDMS Fluidic Channel Using Shrinkage Compensation and Surface Roughness Control
,”
Int. J. Precis. Eng. Manuf.
,
18
(
12
), pp.
1711
1717
.
22.
Argon
,
A. S.
, and
Hannoosh
,
J. G.
,
1977
, “
Initiation of Crazes in Polystyrene
,”
Philos. Mag.
,
36
(
5
), pp.
1195
1216
.
23.
Chern
,
S. S.
, and
Hsiao
,
C. C.
,
1985
, “
A Generalized Time-Dependent Theory on Craze Initiation in Viscoelastic Media
,”
J. Appl. Phys.
,
57
(
6
), pp.
1823
1834
.
24.
Zhang
,
S. J.
,
To
,
S.
,
Zhang
,
G. Q.
, and
Zhu
,
Z. W.
,
2015
, “
A Review of Machine-Tool Vibration and Its Influence Upon Surface Generation in Ultra-Precision Machining
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
34
42
.
You do not currently have access to this content.