Abstract

A warm forming process is designed for AA5754 to overcome low room temperature formability. The solution includes increased working temperature and is demonstrated with a railway vehicle component. A finite element (FE)-based methodology was adopted to design the process taking into account also the starting condition of the alloy. In fact, the component's dent resistance can be enhanced if the yield point is increased accordingly: the stamping process was thus designed considering the blank in both the H111 (annealed and slightly hardened) and H32 (strain-hardened and stabilized) conditions that were preliminarily characterized. Tensile and formability tests were carried out at different temperature and strain rate levels, thus providing the data to be implemented within the FE model (ABAQUS/CAE): the stamping was at first simulated at room temperature to evaluate the blank critical regions. Subsequently, the warm forming process was designed by means of an uncoupled thermo-mechanical approach. Thermal simulations were run to properly design the heating strategy and achieve an optimal temperature distribution over the blank deformation zone (according to the results of the material characterization). Such a distribution was then imported as a boundary condition into the mechanical step (ABAQUS/Explicit) to determine the optimal process parameters and obtain a sound component (strain severity was monitored implementing a forming limit diagram (FLD))-based damage criterion). The simulation model was validated experimentally with stamping trials to fabricate a sound component using the optimized heating strategy and punch stroke profile.

References

1.
Bauer
,
C.
,
Hofer
,
J.
,
Althaus
,
H.-J.
,
Del Duce
,
A.
, and
Simons
,
A.
,
2015
, “
The Environmental Performance of Current and Future Passenger Vehicles: Life Cycle Assessment Based on a Novel Scenario Analysis Framework
,”
Appl. Energy
,
157
, pp.
871
883
.
2.
Das
,
S.
,
Graziano
,
D.
,
Upadhyayula
,
V. K. K.
,
Masanet
,
E.
,
Riddle
,
M.
, and
Cresko
,
J.
,
2016
, “
Vehicle Lightweighting Energy Use Impacts in U. S. Light-Duty Vehicle Fl Eet
,”
SUSMAT
,
8
, pp.
5
13
.
3.
Mayer
,
R. M.
,
Poulikakos
,
L. D.
,
Lees
,
A. R.
,
Heutschi
,
K.
,
Kalivoda
,
M. T.
, and
Soltic
,
P.
,
2012
, “
Reducing the Environmental Impact of Road and Rail Vehicles
,”
Environ. Impact Assess. Rev.
,
32
(
1
), pp.
25
32
.
4.
Hirsch
,
J.
,
2014
, “
Recent Development in Aluminium for Automotive Applications
,”
Trans. Nonferrous Met. Soc. China
,
24
(
7
), pp.
1995
2002
.
5.
Poznak
,
A.
,
Freiberg
,
D.
, and
Sanders
,
P.
,
2018
,
Automotive Wrought Aluminium Alloys
,
Woodhead Publishing
,
Cambridge, UK
.
6.
Robinson
,
M.
,
2016
,
Application of Composites in Rail Vehicles BT—Reference Module in Materials Science and Materials Engineering
,
Elsevier Ltd
,
Oxford
.
7.
Matsika
,
E.
,
Ricci
,
S.
,
Mortimer
,
P.
,
Georgiev
,
N.
, and
O’Neill
,
C.
,
2013
, “
Rail Vehicles, Environment, Safety and Security
,”
Res. Transp. Econ.
,
41
(
1
), pp.
43
58
.
8.
EN 45545-2—Railway Applications—Fire Protection on Railway Vehicles—Part 2: Requirements for Fire Behaviour of Materials and Components.
9.
Ekstrand
,
G.
, and
Asnafi
,
N.
,
1998
, “
On Testing of the Stiffness and the Dent Resistance of Autobody Panels
,”
Mater. Des.
,
19
(
4
), pp.
145
156
.
10.
Holmberg
,
S.
, and
Thilderkvist
,
P.
,
2002
, “
Influence of Material Properties and Stamping Conditions on the Stiffness and Static Dent Resistance of Automotive Panels
,”
Mater. Des.
,
23
(
8
), pp.
681
691
.
11.
Wilson
,
D. V.
,
1988
, “
Aluminium Versus Steel in the Family Car—the Formability Factor
,”
J. Mech. Work. Technol.
,
16
(
3
), pp.
257
277
.
12.
Palumbo
,
G.
,
2013
, “
Hydroforming a Small Scale Aluminum Automotive Component Using a Layered Die
,”
Mater. Des.
,
44
, pp.
365
373
.
13.
Skjoedt
,
M.
,
Silva
,
M. B.
,
Martins
,
P. A. F.
, and
Bay
,
N.
,
2009
, “
Strategies and Limits in Multi-stage Single-Point Incremental Forming
,”
J. Strain Anal. Eng. Des.
,
45
(
1
), pp.
33
44
.
14.
Toros
,
S.
,
Ozturk
,
F.
, and
Kacar
,
I.
,
2008
, “
Review of Warm Forming of Aluminum-Magnesium Alloys
,”
J. Mater. Process. Technol.
,
207
(
1–3
), pp.
1
12
.
15.
Zheng
,
K.
,
Politis
,
D. J.
,
Wang
,
L.
, and
Lin
,
J.
,
2018
, “
A Review on Forming Techniques for Manufacturing Lightweight Complex—Shaped Aluminium Panel Components
,”
Int. J. Light. Mater. Manuf.
,
1
(
2
), pp.
55
80
.
16.
Palumbo
,
G.
,
Piccininni
,
A.
,
Guglielmi
,
P.
, and
Di Michele
,
G.
,
2015
, “
Warm HydroForming of the Heat Treatable Aluminium Alloy AC170PX
,”
J. Manuf. Process.
,
20
, pp.
24
32
.
17.
Palumbo
,
G.
, and
Piccininni
,
A.
,
2013
, “
Numerical-Experimental Investigations on the Manufacturing of an Aluminium Bipolar Plate for Proton Exchange Membrane Fuel Cells by Warm Hydroforming
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
731
742
.
18.
Mahabunphachai
,
S.
,
Koc
,
M.
, and
Carsley
,
J. E.
,
2011
, “
Investigations on Deformation Behavior of AA5754 Sheet Alloy Under Warm Hydroforming Conditions
,”
ASME J. Manuf. Sci. Eng.
,
133
(
5
), p. 051007.
19.
Li
,
D.
, and
Ghosh
,
A.
,
2003
, “
Tensile Deformation Behavior of Aluminum Alloys at Warm Forming Temperatures
,”
Mater. Sci. Eng., A
,
352
(
1–2
), pp.
279
286
.
20.
Abedrabbo
,
N.
,
Pourboghrat
,
F.
, and
Carsley
,
J.
,
2007
, “
Forming of AA5182-O and AA5754-O at Elevated Temperatures Using Coupled Thermo-mechanical Finite Element Models
,”
Int. J. Plast.
,
23
(
5
), pp.
841
875
.
21.
Palumbo
,
G.
, and
Tricarico
,
L.
,
2007
, “
Numerical and Experimental Investigations on the Warm Deep Drawing Process of Circular Aluminum Alloy Specimens
,”
J. Mater. Process. Technol.
,
184
(
1–3
), pp.
115
123
.
22.
Kaya
,
S.
,
Spampinato
,
G.
, and
Altan
,
T.
,
2008
, “
An Experimental Study on Nonisothermal Deep Drawing Process Using Aluminum and Magnesium Alloys
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
), p.
061001
.
23.
Banabic
,
D.
,
Carleer
,
B.
,
Comsa
,
D.-S.
,
Kam
,
E.
,
Krasovskyy
,
A.
,
Mattiasson
,
K.
,
Sester
,
M.
,
Sigvant
,
M.
, and
Zhang
,
X.
,
2010
, Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation,
Springer-Verlag
,
Berlin/Heidelberg
.
24.
Panicker
,
S. S.
, and
Panda
,
S. K.
,
2019
, “
Investigations Into Improvement in Formability of AA5754 and AA6082 Sheets at Elevated Temperatures
,”
J. Mater. Eng. Perform.
,
28
(
5
), pp.
2967
2982
.
25.
Neto
,
D. M.
,
Martins
,
J. M. P.
,
Cunha
,
P. M.
,
Alves
,
J. L.
,
Oliveira
,
M. C.
,
Laurent
,
H.
, and
Menezes
,
L. F.
,
2017
, “
Thermo-mechanical Finite Element Analysis of the AA5086 Alloy Under Warm Forming Conditions
,”
Int. J. Solids Struct.
,
151
, pp. 99–117.
26.
ISO 6892-2
,
2011
,
Metallic Materials—Tensile Testing—Part 2: Method of Test at Elevated Temperature.
27.
Keeler
,
S. P.
, and
Backofen
,
W. A.
,
1963
, “
Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches
,”
ASM Trans. Q.
,
56
(
1
), pp.
25
48
.
28.
Keeler
,
S. P.
,
2010
, “
Determination of Forming Limits in Automotive Stampings
,” SAE Technical Paper Series 1.
29.
Goodwin
,
G. M.
,
2010
, “
Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop
,” SAE Technical Paper Series,
1
, pp.
380
387
.
30.
Zhang
,
R.
,
Shao
,
Z.
, and
Lin
,
J.
,
2018
, “
A Review on Modelling Techniques for Formability Prediction of Sheet Metal Forming
,”
Int. J. Light. Mater. Manuf.
,
1
(
3
), pp.
115
125
.
31.
Nakazima
,
K.
,
Kikuma
,
T.
, and
Hasuka
,
K.
,
1968
, “
Study on the Formability of Steel Sheet
,”
Yamata Tech. Rep.
,
264
, pp.
8517
8530
.
32.
Hu
,
H.
,
Liang
,
J.
,
Tang
,
Z.
,
Guo
,
X.
, and
Li
,
L.
,
2014
, “
Digital Speckle Based Strain Measurement System for Forming Limit Diagram Prediction
,”
Opt. Lasers Eng.
,
55
, pp.
12
21
.
33.
Min
,
J.
,
Stoughton
,
T. B.
,
Carsley
,
J. E.
, and
Lin
,
J.
,
2017
, “
Comparison of DIC Methods of Determining Forming Limit Strains
,”
Procedia Manuf.
,
7
, pp.
668
674
.
34.
12004-2 ISO
,
2008
, Metallic Materials—Sheet and Strip—Determination of Forming-Limit Curves—Part 2: Determination of Forming-Limit Curves in the Laboratory.
35.
Naka
,
T.
,
Torikai
,
G.
,
Hino
,
R.
, and
Yoshida
,
F.
,
2001
, “
The Effects of Temperature and Forming Speed on the Forming Limit Diagram for Type 5083 Aluminum ± Magnesium Alloy Sheet
,”
J. Mater. Process. Technol.
,
113
, pp.
648
653
.
36.
Dassault Systems
,
2017
, “Abaqus Analysis User’s Manual”.
37.
Laurent
,
H.
,
Coër
,
J.
,
Manach
,
P. Y.
,
Oliveira
,
M. C.
, and
Menezes
,
L. F.
,
2015
, “
Experimental and Numerical Studies on the Warm Deep Drawing of an Al-Mg Alloy
,”
Int. J. Mech. Sci.
,
93
, pp.
59
72
.
38.
Kim
,
H. S.
,
Koç
,
M.
,
Ni
,
J.
, and
Ghosh
,
A.
,
2006
, “
Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys—Validation Through Comparisons With Experiments and Determination of a Failure Criterion
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
613
621
.
39.
El Fakir
,
O.
,
Wang
,
L.
,
Balint
,
D.
,
Dear
,
J. P.
,
Lin
,
J.
, and
Dean
,
T. A.
,
2014
, “
Numerical Study of the Solution Heat Treatment, Forming, and in-Die Quenching (HFQ) Process on AA5754
,”
Int. J. Mach. Tools Manuf.
,
87
, pp.
39
48
.
40.
Liu
,
X.
,
Ji
,
K.
,
Fakir
,
O. E.
,
Fang
,
H.
,
Gharbi
,
M. M.
, and
Wang
,
L. L.
,
2017
, “
Determination of the Interfacial Heat Transfer Coefficient for a Hot Aluminium Stamping Process
,”
J. Mater. Process. Technol.
,
247
(
March
), pp.
158
170
.
41.
Jiang
,
Y. F.
, and
Ding
,
H.
,
2021
, “
Investigations of Interfacial Heat Transfer Efficiency in HFQ® Process of High Strength Aluminum Alloy
,”
Mater. Res. Express
,
8
(
1
), p.
16507
.
42.
Khalifa
,
A. J. N.
,
2001
, “
Natural Convective Heat Transfer Coefficient—A Review I. Isolated Vertical and Horizontal Surfaces
,”
Energy Convers. Manag.
,
42
(
4
), pp.
491
504
.
You do not currently have access to this content.