Abstract

Shear-based deformation processing by hybrid cutting-extrusion and free machining are used to make continuous strip, of thickness up to 1 mm, from low-workability AA6013-T6 in a single deformation step. The intense shear can impose effective strains as large as 2 in the strip without pre-heating of the workpiece. The creation of strip in a single step is facilitated by three factors inherent to the cutting deformation zone: highly confined shear deformation, in situ plastic deformation-induced heating, and high hydrostatic pressure. The hybrid cutting-extrusion, which employs a second die located across from the primary cutting tool to constrain the chip geometry, is found to produce strip with smooth surfaces (Sa < 0.4 μm) that is similar to cold-rolled strip. The strips show an elongated grain microstructure that is inclined to the strip surfaces—a shear texture—that is quite different from rolled sheet. This shear texture (inclination) angle is determined by the deformation path. Through control of the deformation parameters such as strain and temperature, a range of microstructures and strengths could be achieved in the strip. When the cutting-based deformation was done at room temperature, without workpiece preheating, the starting T6 material was further strengthened by as much as 30% in a single step. In elevated-temperature cutting-extrusion, dynamic recrystallization was observed, resulting in a refined grain size in the strip. Implications for deformation processing of age-hardenable Al alloys into sheet form, and microstructure control therein, are discussed.

References

1.
King
,
J. E.
,
You
,
C. P.
, and
Knott
,
J. F.
,
1981
, “
Serrated Yielding and the Localized Shear Failure Mode in Aluminum Alloys
,”
Acta Metall.
,
29
(
9
), pp.
1553
1566
.
2.
Kang
,
J.
,
Wilkinson
,
D. S.
,
Jain
,
M.
,
Embury
,
J. D.
,
Beaudoin
,
A. J.
,
Kim
,
S.
,
Mishira
,
R.
, and
Sachdev
,
A. K.
,
2006
, “
On the Sequence of Inhomogeneous Deformation Process Occurring During Tensile Deformation of Strip Cast AA5754
,”
Acta Mater.
,
54
(
1
), pp.
209
218
.
3.
Halim
,
H.
,
Wilkinson
,
D. S.
, and
Niewczas
,
M.
,
2007
, “
The Portevin-Le Chatelier Effect and Shear Band Formation in an AA5754 Alloy
,”
Acta Mater.
,
55
(
12
), pp.
4151
4160
.
4.
Prillhofer
,
P.
,
Rank
,
G.
,
Berneder
,
J.
,
Antrekowitsch
,
H.
,
Uggowitzer
,
P. J.
, and
Pogatscher
,
S.
,
2014
, “
Property Criteria for Automotive Al-Mg-Si Sheet Alloy
,”
Materials.
,
7
(
7
), pp.
5047
5068
.
5.
Engler
,
O.
, and
Hirsch
,
J.
,
2002
, “
Texture Control by Thermomechanical Processing of AA6xxx Al-Mg-Si Sheet Alloys for Automotive Applications—A Review
,”
Mater. Sci. Eng. A
(
1–2
),
336
, pp.
249
262
.
6.
Hoshi
,
T.
, and
Shaw
,
M. C.
,
1977
, “
Cut-Forming: A New Method of Making Wire
,”
ASME J. Eng. Ind.
,
99
(
1
), pp.
225
228
.
7.
Efe
,
M.
,
Moscoso
,
W.
,
Trumble
,
K. P.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2012
, “
Mechanics of Large Strain Extrusion Machining and Application to Deformation Processing of Magnesium Alloys
,”
Acta Mater.
,
60
(
5
), pp.
2031
2042
.
8.
Sagapuram
,
D.
,
Efe
,
M.
,
Moscoso
,
W.
,
Chandrasekar
,
S.
, and
Trumble
,
K. P.
,
2013
, “
Controlling Texture in Magnesium Alloy Sheet by Shear-Based Deformation Processing
,”
Acta Mater.
,
61
(
18
), pp.
6843
6856
.
9.
Sagapuram
,
D.
,
Viswanathan
,
K.
,
Mahato
,
A.
,
Sundaram
,
N. K.
,
M’Saoubi
,
R.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2016
, “
Geometric Flow Control of Shear Bands by Suppression of Viscous Sliding
,”
Proc. R. Soc. A
,
472
(
2192
), p.
20160167
.
10.
Kustas
,
A. B.
,
Sagapuram
,
D.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2016
, “
Texture Development in High-Silicon Iron Sheet Produced by Simple Shear Deformation
,”
Metall. Mater. Trans. A
,
47A
(
6
), pp.
3095
3108
.
11.
ALCOA
, Aluminum Alloy 6013, Alloy Digest, Orange, NJ, September 1987.
12.
ALCOA
, Aerospace Technical Fact Sheet: Alloy 6013 Sheet, Bettendorf, IA.
13.
Issahaq
,
M. N.
,
Chandrasekar
,
S.
, and
Trumble
,
K. P.
,
2021
, “
Single-Step Shear-Based Deformation Processing of Electrical Conductor Wires
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
051010
.
14.
De Chiffre
,
L.
,
1976
, “
Extrusion-Cutting
,”
Int. J. Mach. Tool Des. Res.
,
16
(
2
), pp.
137
144
.
15.
Nakashima
,
K.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
,
1998
, “
Influence of Channel Angle on the Development of Ultrafine Grains in Equal-Channel Angular Pressing
,”
Acta Mater.
,
46
(
5
), pp.
1589
1599
.
16.
Xu
,
C.
,
Furukawa
,
M.
,
Horita
,
Z.
, and
Langdon
,
T. G.
,
2003
, “
Using ECAP to Achieve Grain Refinement, Precipitate Fragmentation and High Strain Rate Superplasticity in a Spray-Cast Aluminum Alloy
,”
Acta Mater.
,
51
(
20
), pp.
6139
6149
.
17.
Hazra
,
S. S.
,
Pereloma
,
E. V.
, and
Gazder
,
A. A.
,
2011
, “
Microstructure and Mechanical Properties After Annealing of Equal-Channel Angular Pressed Interstitial-Free Steel
,”
Acta Mater.
,
59
(
10
), pp.
4015
4029
.
18.
Guo
,
Y.
,
Efe
,
M.
,
Moscoso
,
W.
,
Sagapuram
,
D.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2012
, “
Deformation Field in Large-Strain Extrusion Machining and Implication for Deformation Processing
,”
Scr. Mater.
,
66
(
5
), pp.
235
238
.
19.
Engler
,
O.
,
Tomé
,
C. N.
, and
Huh
,
M.-Y.
,
2000
, “
A Study of Through-Thickness Texture Gradients in Rolled Sheets
,”
Metall. Mater. Trans. A
,
31A
(
9
), pp.
2299
2315
.
20.
Mishin
,
O. V.
,
Bay
,
B.
, and
Jensen
,
J.
,
2000
, “
Through-Thickness Texture Gradients in Cold-Rolled Aluminum
,”
Metall. Mater. Trans. A
,
31A
(
6
), pp.
1653
1662
.
21.
Truszkowski
,
W.
,
Król
,
J.
, and
Major
,
B.
,
1982
, “
On Penetration of Shear Texture Into Rolled Aluminum and Copper
,”
Metall. Trans. A
,
13A
(
4
), pp.
665
669
.
22.
Huang
,
C.
,
Murthy
,
T. G.
,
Shankar
,
M. R.
,
M’Saoubi
,
R.
, and
Chandrasekar
,
S.
,
2008
, “
Temperature Rise in Severe Plastic Deformation of Titanium at Small Strain-Rates
,”
Scr. Mater.
,
58
(
8
), pp.
663
666
.
23.
Backofen
,
W. A.
,
1973
, “
Deformation Processing
,”
Metall. Trans.
,
4
(
12
), pp.
2679
2699
.
24.
Thomsen
,
E. G.
,
Yang
,
C. T.
, and
Kobayashi
,
S.
,
1965
,
Mechanics of Plastic Deformation in Metal Processing
,
The Macmillan Company
,
New York
.
25.
Cai
,
S. L.
, and
Dai
,
L. H.
,
2014
, “
Suppression of Repeated Adiabatic Shear Banding by Dynamic Large Strain Extrusion Machining
,”
J. Mech. Phys. Solids
,
73
(
1
), pp.
84
102
.
26.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.
27.
Townend
,
G. H.
,
1947
, “
Direction of Maximum Crystal Elongation During Metal Cutting
,”
J. Appl. Phys.
,
18
(
5
), pp.
489
490
.
28.
Le
,
H. R.
, and
Sutcliffe
,
M. P. F.
,
2000
, “
Analysis of Surface Roughness of Cold-Rolled Aluminum Foil
,”
Wear
,
244
(
1–2
), pp.
71
78
.
29.
Kalpakcioglu
,
S.
,
1961
, “
On the Mechanics of Shear Spinning
,”
J. Eng. Ind.
,
83
(
2
), pp.
125
130
.
30.
Jackson
,
K.
, and
Allwood
,
J.
,
2009
, “
The Mechanics of Incremental Sheet Forming
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1158
1174
.
31.
Totten
,
G. E.
,
Funatani
,
K.
, and
Xie
,
L.
,
2004
,
Handbook of Metallurgical Process Design
, 2nd ed.,
Marcel Dekker, Inc.
,
New York
, pp.
73
74
.
32.
Doherty
,
R. D.
,
Hughes
,
D. A.
,
Humphreys
,
F. J.
,
Jonas
,
J. J.
,
Jensen
,
D. J.
,
Kassner
,
M. E.
,
King
,
W. E.
,
McNelley
,
T. R.
,
McQueen
,
H. J.
, and
Rollett
,
A. D.
,
1997
, “
Current Issues in Recrystallization: A Review
,”
Mater. Sci. Eng. A
,
238
(
2
), pp.
219
274
.
33.
Rollett
,
A.
,
Humphreys
,
F.
,
Rohrer
,
G. S.
, and
Hatherly
,
M.
,
2004
,
Recrystallization and Related Annealing Phenomena
, 2nd ed.,
Elsevier
,
New York
.
You do not currently have access to this content.