Abstract

A phenomenological model of a single-shot grayscale photopolymerization process is developed and used within a virtual process planning framework for microlens fabrication. Along with previous research, the kinetic relations describing the solidification of UV-curable resin are derived based on the underlying chemical reactions involved in free radical photopolymerization. As enhancements to the state-of-the-art, our multiphysics model includes a recently proposed super-Gaussian description of the light field, as well as the photobleaching effect due to the live reduction in photoinitiator concentration during UV illumination. In addition, heat generation and thermal strains due to the exothermic chemical reactions, and chemical shrinkage due to polymerization and cross-linking of monomers are considered. The model is numerically implemented via finite element method in comsol multiphysics software. Using a simulation-based virtual process planning framework, customized microlenses are fabricated with an in-house grayscale lithography experimental setup for digital micromirror device (DMD)-based volumetric additive manufacturing. Simulation and experimental results show that after the end of exposure, the temperature quickly rises by the advancement of exothermic chemical reactions and reaches a maximum rise of 100 K in a few seconds, followed by a slow cooling and recovery of thermal strains. It is observed that chemical and thermal shrinkages can compromise the dimensional accuracy of the final part near the resin–substrate interface due to the strong adhesion of the solidified part to the rigid substrate that prevents material shrinkage in the vicinity of the rigid substrate.

References

1.
Beaman
,
J. J.
,
Bourell
,
D. L.
,
Seepersad
,
C. C.
, and
Kovar
,
D.
,
2020
, “
Additive Manufacturing Review: Early Past to Current Practice
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110812
. 10.1115/1.4048193
2.
Emami
,
M. M.
,
Barazandeh
,
F.
, and
Yaghmaie
,
F.
,
2014
, “
Scanning-Projection Based Stereolithography: Method and Structure
,”
Sens. Actuators, A
,
218
, pp.
116
124
. 10.1016/j.sna.2014.08.002
3.
Wang
,
Y.
,
Xue
,
D.
, and
Mei
,
D.
,
2020
, “
Projection-Based Continuous 3D Printing Process With the Grayscale Display Method
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021003
. 10.1115/1.4045616
4.
Jariwala
,
A. S.
,
Ding
,
F.
,
Zhao
,
X.
, and
Rosen
,
D. W.
,
2009
, “
A Process Planning Method for Thin Film Mask Projection Micro-Stereolithography
,”
Volume 2: 29th Computers Information in Engineering Conference, Parts A B
,
San Diego, CA
,
Aug. 30–Sept. 2, 2009
,
ASMEDC
, pp.
685
694
.
5.
Rammohan
,
A.
,
Dwivedi
,
P. K.
,
Martinez-Duarte
,
R.
,
Katepalli
,
H.
,
Madou
,
M. J.
, and
Sharma
,
A.
,
2011
, “
One-Step Maskless Grayscale Lithography for the Fabrication of 3-Dimensional Structures in SU-8
,”
Sens. Actuators, B
,
153
(
1
), pp.
125
134
. 10.1016/j.snb.2010.10.021
6.
Hu
,
R.
,
Luo
,
X.
,
Zheng
,
H.
,
Qin
,
Z.
,
Gan
,
Z.
,
Wu
,
B.
, and
Liu
,
S.
,
2012
, “
Design of a Novel Freeform Lens for LED Uniform Illumination and Conformal Phosphor Coating
,”
Opt. Express
,
20
(
13
), p.
13727
. 10.1364/OE.20.013727
7.
Huang
,
S.
,
Li
,
M.
,
Shen
,
L.
,
Qiu
,
J.
, and
Zhou
,
Y.
,
2018
, “
Fabrication of High Quality Aspheric Microlens Array by Dose-Modulated Lithography and Surface Thermal Reflow
,”
Opt. Laser Technol.
,
100
, pp.
298
303
. 10.1016/j.optlastec.2017.10.026
8.
Chen
,
X.
,
Liu
,
W.
,
Dong
,
B.
,
Lee
,
J.
,
Ware
,
H. O. T.
,
Zhang
,
H. F.
, and
Sun
,
C.
,
2018
, “
High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses With Sub 7 nm Surface Roughness
,”
Adv. Mater.
,
30
(
18
), p.
1705683
. 10.1002/adma.201705683
9.
Emami
,
M. M.
, and
Rosen
,
D. W.
,
2018
, “
An Improved Vat Photopolymerization Cure Model Demonstrates Photobleaching Effects
,”
29th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
, pp.
1940
1952
.
10.
Aristizabal
,
S. L.
,
Cirino
,
G. A.
,
Montagnoli
,
A. N.
,
Sobrinho
,
A. A.
,
Rubert
,
J. B.
,
Hospital
,
M.
, and
Mansano
,
R. D.
,
2013
, “
Microlens Array Fabricated by a Low-Cost Grayscale Lithography Maskless System
,”
Opt. Eng.
,
52
(
12
), p.
125101
. 10.1117/1.OE.52.12.125101
11.
Kick
,
A.
,
Helmer
,
D.
,
Kotz
,
F.
, and
Rapp
,
B. E.
,
2020
, “Generation of Multi-Level Microstructures Using a Wavelength-Selective Photoresist and Mask-Less Grayscale Lithography,”
Microfluidics. BioMEMS, and Medical Microsystems XVIII
,
B. L.
Gray
, and
H.
Becker
, eds., p.
3
,
SPIE – International Society for Optical Engineering
,
San Francisco, CA
.
12.
Yoon
,
J.
,
Kim
,
K.
, and
Park
,
W.
,
2017
, “
Modulated Grayscale UV Pattern for Uniform Photopolymerization Based on a Digital Micromirror Device System
,”
Appl. Phys. Lett.
,
111
(
3
), p.
033505
. 10.1063/1.4986393
13.
Yoon
,
J.
, and
Park
,
W.
,
2020
, “
Microsized 3D Hydrogel Printing System Using Microfluidic Maskless Lithography and Single Axis Stepper Motor
,”
Biochip J.
,
14
(
3
), pp.
317
325
. 10.1007/s13206-020-4310-4
14.
Zhong
,
K.
,
Gao
,
Y.
,
Li
,
F.
,
Zhang
,
Z.
, and
Luo
,
N.
,
2014
, “
Fabrication of PDMS Microlens Array by Digital Maskless Grayscale Lithography and Replica Molding Technique
,”
Optik
,
125
(
10
), pp.
2413
2416
. 10.1016/j.ijleo.2013.10.082
15.
You
,
S.
,
Guan
,
J.
,
Alido
,
J.
,
Hwang
,
H. H.
,
Yu
,
R.
,
Kwe
,
L.
,
Su
,
H.
, and
Chen
,
S.
,
2020
, “
Mitigating Scattering Effects in Light-Based Three-Dimensional Printing Using Machine Learning
,”
ASME J. Manuf. Sci. Eng.
,
142
(
8
), p.
081002
. 10.1115/1.4046986
16.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, 2nd ed.,
Springer
,
New York
.
17.
Lehtinen
,
P.
,
Kaivola
,
M.
, and
Partanen
,
J.
,
2018
, “
Absorption Cross-Sections of Disperse Orange 13 and Irgacure 784 Determined With Mask Projection Vat Photopolymerization
,”
Addit. Manuf.
,
22
, pp.
286
289
. 10.1016/j.addma.2018.05.006
18.
Jariwala
,
A. S.
,
Ding
,
F.
,
Boddapati
,
A.
,
Breedveld
,
V.
,
Grover
,
M. A.
,
Henderson
,
C. L.
, and
Rosen
,
D. W.
,
2011
, “
Modeling Effects of Oxygen Inhibition in Mask-Based Stereolithography
,”
Rapid Prototyp. J.
,
17
(
3
), pp.
168
175
. 10.1108/13552541111124734
19.
Boddapati
,
A.
,
2010
, “
Modeling Cure Depth During Photopolymerization of Multifunctional Acrylates
,”
M.Sc., thesis
,
Georgia Institute of Technology
.
20.
Wu
,
J.
,
Zhao
,
Z.
,
Hamel
,
C. M.
,
Mu
,
X.
,
Kuang
,
X.
,
Guo
,
Z.
, and
Qi
,
H. J.
,
2018
, “
Evolution of Material Properties During Free Radical Photopolymerization
,”
J. Mech. Phys. Solids
,
112
, pp.
25
49
. 10.1016/j.jmps.2017.11.018
21.
Jariwala
,
A. S.
,
2013
, “
Modeling and Process Planning for Exposure Controlled Projection Lithography
,”
Ph.D., dissertation
,
Georgia Institute of Technology
.
22.
Miller
,
G. A.
,
Gou
,
L.
,
Narayanan
,
V.
, and
Scranton
,
A. B.
,
2002
, “
Modeling of Photobleaching for the Photoinitiation of Thick Polymerization Systems
,”
J. Polym. Sci., Part A: Polym. Chem.
,
40
(
6
), pp.
793
808
. 10.1002/pola.10162
23.
Westbeek
,
S.
,
van Dommelen
,
J. A. W.
,
Remmers
,
J. J. C.
, and
Geers
,
M. G. D.
,
2018
, “
Multiphysical Modeling of the Photopolymerization Process for Additive Manufacturing of Ceramics
,”
Eur. J. Mech. A Solids
,
71
, pp.
210
223
. 10.1016/j.euromechsol.2018.03.020
24.
Westbeek
,
S.
,
Remmers
,
J. J. C.
,
van Dommelen
,
J. A. W.
, and
Geers
,
M. G. D.
,
2020
, “
Multi-Scale Process Simulation for Additive Manufacturing Through Particle Filled Vat Photopolymerization
,”
Comput. Mater. Sci.
,
180
, p.
109647
. 10.1016/j.commatsci.2020.109647
25.
Emami
,
M. M.
, and
Rosen
,
D. W.
,
2020
, “
Modeling of Light Field Effect in Deep Vat Polymerization for Grayscale Lithography Application
,”
Addit. Manuf.
,
36
, p.
101595
. 10.1016/j.addma.2020.101595
26.
Alda
,
J.
,
2003
, “
Laser and Gaussian Beam Propagation and Transformation
,”
Encycl. Opt. Eng.
, pp.
999
1012
. 10.1081/E-EOE-120009751
27.
Andrzejewska
,
E.
, and
Andrzejewski
,
M.
,
1998
, “
Polymerization Kinetics of Photocurable Acrylic Resins
,”
J. Polym. Sci., Part A: Polym. Chem.
,
36
(
4
), pp.
665
673
. 10.1002/(SICI)1099-0518(199803)36:4<665::AID-POLA15>3.0.CO;2-K
28.
Goodner
,
M. D.
, and
Bowman
,
C. N.
,
2002
, “
Development of a Comprehensive Free Radical Photopolymerization Model Incorporating Heat and Mass Transfer Effects in Thick Films
,”
Chem. Eng. Sci.
,
57
(
5
), pp.
887
900
. 10.1016/S0009-2509(01)00287-1
29.
Kim
,
E. K.
, and
Willson
,
C. G.
,
2006
, “
Thermal Analysis for Step and Flash Imprint Lithography During UV Curing Process
,”
Microelectron. Eng.
,
83
(
2
), pp.
213
217
. 10.1016/j.mee.2005.08.007
30.
Mucci
,
V.
,
Arenas
,
G.
,
Duchowicz
,
R.
,
Cook
,
W. D.
, and
Vallo
,
C.
,
2009
, “
Influence of Thermal Expansion on Shrinkage During Photopolymerization of Dental Resins Based on Bis-GMA/TEGDMA
,”
Dent. Mater.
,
25
(
1
), pp.
103
114
. 10.1016/j.dental.2008.04.014
31.
Onisor
,
I.
,
Asmussen
,
E.
, and
Krejci
,
I.
,
2011
, “
Temperature Rise During Photo-Polymerization for Onlay Luting
,”
Am. J. Dent.
,
24
, pp.
250
256
.
32.
Hennessy
,
M. G.
,
Vitale
,
A.
,
Cabral
,
J. T.
, and
Matar
,
O. K.
,
2015
, “
Role of Heat Generation and Thermal Diffusion During Frontal Photopolymerization
,”
Phys. Rev. E
,
92
, p.
22403
. 10.1103/PhysRevE.92.022403
33.
Vitale
,
A.
,
Hennessy
,
M. G.
,
Matar
,
O. K.
, and
Cabral
,
J. T.
,
2015
, “
A Unified Approach for Patterning via Frontal Photopolymerization
,”
Adv. Mater.
,
27
(
40
), pp.
6118
6124
. 10.1002/adma.201502607
34.
Gao
,
K.
,
Ingenhut
,
B. L. J.
,
Van De Ven
,
A. P. A.
,
Mackenzie
,
F. O. V.
, and
Cate
,
A. T.
,
2018
, “
Multiphysics Modelling of Photo-Polymerization in Stereolithography Printing Process and Validation
,”
Proceedings of the 2018 COMSOL Conference in Lausanne
.
35.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
,
Samulski
,
E. T.
, and
DeSimone
,
J. M.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
. 10.1126/science.aaa2397
36.
Walker
,
D. A.
,
Hedrick
,
J. L.
, and
Mirkin
,
C. A.
,
2019
, “
Rapid, Large-Volume, Thermally Controlled 3D Printing Using a Mobile Liquid Interface
,”
Science
,
366
(
6463
), pp.
360
364
. 10.1126/science.aax1562
37.
Li
,
X.
,
Mao
,
H.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2019
, “
Mask Video Projection-Based Stereolithography With Continuous Resin Flow
,”
ASME J. Manuf. Sci. Eng.
,
141
(8), p.
081007
. 10.1115/1.4043765
38.
Usamentiaga
,
R.
,
Venegas
,
P.
,
Guerediaga
,
J.
,
Vega
,
L.
,
Molleda
,
J.
, and
Bulnes
,
F.
,
2014
, “
Infrared Thermography for Temperature Measurement and Non-Destructive Testing
,”
Sensors
,
14
(
7
), pp.
12305
12348
. 10.3390/s140712305
39.
Usamentiaga
,
R.
, and
García
,
D. F.
,
2017
, “
Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material
,”
Sensors
,
17
(
5
), p.
1157
. 10.3390/s17051157
40.
Emami
,
M. M.
,
Barazandeh
,
F.
, and
Yaghmaie
,
F.
,
2015
, “
An Analytical Model for Scanning-Projection Based Stereolithography
,”
J. Mater. Process. Technol.
,
219
, pp.
17
27
. 10.1016/j.jmatprotec.2014.12.001
41.
Kang
,
H.-W.
,
Park
,
J. H.
, and
Cho
,
D.-W.
,
2012
, “
A Pixel Based Solidification Model for Projection Based Stereolithography Technology
,”
Sens. Actuators, A
,
178
, pp.
223
229
. 10.1016/j.sna.2012.01.016
42.
Li
,
X.
, and
Chen
,
Y.
,
2017
, “
Micro-Scale Feature Fabrication Using Immersed Surface Accumulation
,”
J. Manuf. Processes
,
28
, pp.
531
540
. 10.1016/j.jmapro.2017.04.022
43.
Sly
,
K. L.
,
Nguyen
,
T. T.
, and
Conboy
,
J. C.
,
2012
, “
Lens-Less Surface Second Harmonic Imaging
,”
Opt. Express
,
20
(
20
), p.
21953
. 10.1364/OE.20.021953
44.
Al-Azzawi
,
A.
,
2018
,
Physical Optics
,
CRC Press
,
Boca Raton, FL
.
45.
Terrones
,
G.
, and
Pearlstein
,
A. J.
,
2001
, “
Effects of Optical Attenuation and Consumption of a Photobleaching Initiator on Local Initiation Rates in Photopolymerizations
,”
Macromolecules
,
34
(
10
), pp.
3195
3204
. 10.1021/ma001235y
46.
Peng
,
H.
,
Chen
,
G.
,
Ni
,
M.
,
Yan
,
Y.
,
Zhuang
,
J.
,
Roy
,
V. A. L.
,
Li
,
R. K. Y.
, and
Xie
,
X.
,
2015
, “
Classical Photopolymerization Kinetics, Exceptional Gelation, and Improved Diffraction Efficiency and Driving Voltage in Scaffolding Morphological H-PDLCs Afforded Using a Photoinitibitor
,”
Polym. Chem.
,
6
(
48
), pp.
8259
8269
. 10.1039/C5PY01414J
47.
SID 24854826—PubChem
, n.d., https://pubchem.ncbi.nlm.nih.gov/substance/24854826, Accessed September 28, 2020.
48.
Mark
,
J. E.
,
2007
,
Physical Properties of Polymers Handbook
,
Springer
,
New York, NY
.
49.
Coefficient of Thermal Expansion
, n.d., https://polymerdatabase.com/polymerphysics/Expansion.html, Accessed September 28, 2020.
50.
Koseki
,
K.
,
Sakamaki
,
H.
, and
Jeong
,
K. M.
,
2013
, “
In Situ Measurement of Shrinkage Behavior of Photopolymers
,”
J. Photopolym. Sci. Technol.
,
26
(
4
), pp.
567
572
. 10.2494/photopolymer.26.567
51.
Zappe
,
H.
,
2010
,
Fundamentals of Micro-Optics
,
Cambridge University Press
,
Cambridge, UK
.
52.
Mucci
,
V.
, and
Vallo
,
C.
,
2012
, “
Efficiency of 2,2-Dimethoxy-2-Phenylacetophenone for the Photopolymerization of Methacrylate Monomers in Thick Sections
,”
J. Appl. Polym. Sci.
,
123
(
1
), pp.
418
425
. 10.1002/app.34473
53.
Kaczmarek
,
H.
, and
Galka
,
P.
,
2013
, “
Effect of Irgacure 651 Initiator on Poly(Methyl Methacrylate) Photostability Studied by UV-Vis Spectroscopy
,”
Open Process Chem. J.
,
1
(
1
), pp.
8
11
. 10.2174/1875180601001010008
You do not currently have access to this content.