Abstract

Unlike conventional forming processes, incremental forming (IF) does not require any part-specific tooling. It is a flexible forming process that is suitable to form user-specific shapes and for low volume production. The IF process has been recognized as a promising manufacturing process over conventional forming for the materials having decent formability. However, it does not give reliable results while forming hard to form materials. A few investigations revealed that heat plays a vital role in enhancing the formability. On heating, the yield stress of the materials gets reduced, the ductility increases, and hence the formability improves. Thus, for the materials having poor formability, an advance IF technique, elevated temperature incremental forming (ET-IF), has been developed. ET-IF involves incremental forming of the sheets while being heated by an external heat supply. This research study focuses on the execution of the ET-IF process and its comparison with the conventional IF process. A radiation type heating device to perform the ET-IF process is designed and fabricated. The experimental investigations were carried out on 1 mm thick AA 1050 sheets by carrying out the IF process at room temperature and enhanced temperatures. Experimentation was initiated with performing straight grove tests, which were later extended to form a few more shapes. Experimental results confirm the delay in fracture and intensification of formability with the ET-IF process in comparison to that of the IF process at room temperature. The work overcomes the limitation and enlarges the scope of application of the IF process.

References

1.
Amino
,
M.
,
Mizoguchi
,
M.
,
Terauchi
,
Y.
, and
Maki
,
T.
,
2014
, “
Current Status of “Dieless” Amino's Incremental Forming
,”
Procedia Eng.
,
81
, pp.
54
62
. 10.1016/j.proeng.2014.09.128
2.
Park
,
J.-J.
, and
Kim
,
Y.-H.
,
2003
, “
Fundamental Studies on the Incremental Sheet Metal Forming Technique
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
447
453
. 10.1016/S0924-0136(03)00768-4
3.
Pohlak
,
M.
,
Majak
,
J.
, and
Küttner
,
R.
,
2007
, “
Manufacturability and Limitations in Incremental Sheet Forming
,”
Proc. Estonian Acad. Sci. Eng.
,
13
(
2
), pp.
129
139
.
4.
Shrivastava
,
P.
, and
Tandon
,
P.
,
2019
, “
Microstructure and Texture Based Analysis of Forming Behavior and Deformation Mechanism of AA1050 Sheet During Single Point Incremental Forming
,”
J. Mater. Process. Technol.
,
266
, pp.
292
310
. 10.1016/j.jmatprotec.2018.11.012
5.
Gupta
,
P.
, and
Jeswiet
,
J.
,
2019
, “
Manufacture of an Aerospace Component by Single Point Incremental Forming
,”
Procedia Manuf.
,
29
(18th International Conference on Sheet Metal, SHEMET 2019), pp.
112
119
. 10.1016/j.promfg.2019.02.113
6.
Kim
,
T. J.
, and
Yang
,
D.-Y.
,
2000
, “
Improvement of Formability for the Incremental Sheet Metal Forming Process
,”
Int. J. Mech. Sci.
,
42
(
7
), pp.
1271
1286
. 10.1016/S0020-7403(99)00047-8
7.
Basril
,
M. A. M.
,
Teng
,
H. M.
,
Azuddin
,
M.
, and
Choudhury
,
I. A.
,
2017
, “
The Effect of Heating Temperature and Methods Towards the Formability of Deep Drawn Square Metal Cup
,”
IOP Conference Series: Materials Science and Engineering
, IOP Publishing, Vol.
210
, No.
1
, p.
012067
. 10.1088/1757-899x/210/1/012067
8.
Maaß
,
F.
,
Hahn
,
M.
,
Dobecki
,
M.
,
Thannhäuser
,
E.
,
Erman Tekkaya
,
A.
, and
Reimers
,
W.
,
2019
, “
Influence of Tool Path Strategies on the Residual Stress Development in Single Point Incremental Forming
,”
Procedia Manuf.
,
29
(18th International Conference on Sheet Metal, SHEMET 2019), pp.
53
58
. 10.1016/j.promfg.2019.02.105
9.
Kang
,
D.-M.
, and
Manabe
,
K.-i.
,
2005
, “
Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method
,”
Trans. Mater. Process.
,
14
(
7
), pp.
607
612
. 10.5228/KSPP.2005.14.7.607
10.
Mohammadi
,
A.
,
Vanhove
,
H.
,
Van Bael
,
A.
,
Weise
,
D.
, and
Duflou
,
J. R.
,
2015
, “Formability Enhancement in Incremental Forming for an Automotive Aluminium Alloy Using Laser Assisted Incremental Forming,”
Key Engineering Materials, Trans
,
M.
Merklein
,
J. R.
Duflou
,
A. G.
Leacock
,
F.
Micari
, and
H.
Hagenah
eds.,
Trans Tech Publications Ltd.
, Vol.
639
, pp.
195
202
.
11.
Karbowski
,
K.
,
2015
, “
Application of Incremental Sheet Forming
,”
Manag. Prod. Eng. Rev.
,
6
(
4
), pp.
55
59
. 10.1515/mper-2015-0036
12.
Torić
,
N.
,
Brnić
,
J.
,
Boko
,
I.
,
Brčić
,
M.
,
Burgess
,
I. W.
, and
Uzelac
,
I.
,
2017
, “
Experimental Analysis of the Behaviour of Aluminium Alloy EN 6082AW T6 at High Temperature
,”
Metals
,
7
(
4
), p.
126
. 10.3390/met7040126
13.
Silva
,
P. J.
, and
Alvares
,
A. J.
,
2015
, “
Incremental Sheet Forming of Aluminum With Warm
,”
2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Busan, South Korea, July 7–11, IEEE
, pp.
808
811
.
14.
Duflou
,
J. R.
,
Habraken
,
A.-M.
,
Cao
,
J.
,
Malhotra
,
R.
,
Bambach
,
M.
,
Adams
,
D.
,
Vanhove
,
H.
,
Mohammadi
,
A.
, and
Jeswiet
,
J.
,
2018
, “
Single Point Incremental Forming: State-of-the-Art and Prospects
,”
Int. J. Mat. Form.
,
11
(
6
), pp.
743
773
. 10.1007/s12289-017-1387-y
15.
Liu
,
Z.
,
2018
, “
Heat-assisted Incremental Sheet Forming: A State-of-the-Art Review
,”
Int. J. Adv. Manuf. Technol.
,
98
(
9–12
), pp.
2987
3003
. 10.1007/s00170-018-2470-3
16.
AL-Obaidi
,
A.
,
Kunke
,
A.
, and
Kräusel
,
V.
,
2019
, “
Hot Single-Point Incremental Forming of Glass-Fiber-Reinforced Polymer (PA6GF47) Supported by Hot Air
,”
J. Manuf. Process.
,
43
(
Part A
), pp.
17
25
. 10.1016/j.jmapro.2019.04.036
17.
Pacheco
,
P. A. P.
,
Silveira
,
M. E.
, and
Silva
,
J. A.
,
2019
, “
Heat Distribution in Electric Hot Incremental Sheet Forming
,”
Int. J. Adv. Manuf. Technol.
,
102
(
1–4
), pp.
991
998
. 10.1007/s00170-018-03228-2
18.
Yang
,
Z.
,
Chen
,
F.
,
Gatea
,
S.
, and
Ou
,
H.
,
2020
, “
Design of the Novel hot Incremental Sheet Forming Experimental Setup, Characterization of Formability Behavior of Polyether-Ether-Ketone (PEEK)
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11
), pp.
5365
5381
. 10.1007/s00170-020-05035-0
19.
Pacheco
,
P. A. P.
, and
Silveira
,
M. E.
,
2018
, “
Numerical Simulation of Electric Hot Incremental Sheet Forming of 1050 Aluminum With and Without Preheating
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3097
3108
. 10.1007/s00170-017-0879-8
20.
Kim
,
Y. H.
, and
Park
,
J. J.
,
2002
, “
Effect of Process Parameters on Formability in Incremental Forming of Sheet Metal
,”
J. Mater. Process. Technol.
,
130
, pp.
42
46
. 10.1016/S0924-0136(02)00788-4
21.
Hussain
,
G.
,
Hayat
,
N.
, and
Lin
,
G.
,
2012
, “
Pyramid as Test Geometry to Evaluate Formability in Incremental Forming: Recent Results
,”
J. Mech. Sci. Technol.
,
26
(
8
), pp.
2337
2345
. 10.1007/s12206-012-0617-y
You do not currently have access to this content.