Abstract

The extrusion systems of the widespread Fused Deposition Modeling (FDM) three-dimensional (3D) printers enable printing only with materials in the filament form. This property hinders the usage of these FDM 3D printers in many fields where the printing materials are in forms other than filaments. Thus, this paper proposes a Heated Inductive-enabled Syringe Pump Extrusion (HISPE) multifunction open-source module with a potential application in bioprinting (i.e., extrusion-based bioprinting). The proposed HISPE module is designed to be cost-effective, simple, and easy to replicate. It is capable of replacing the conventional extrusion system of any open-source cartesian FDM 3D printer. This module widens both the range of the FDM 3D printing materials (e.g., bioinks, biopolymers, blends of materials, or composites) and their forms (e.g., hydrogels, powder, pellets, or flakes). The capabilities of the proposed module were investigated through 3D printing bone scaffolds with a filament diameter of 400 µm and pore size of 350 µm by a polycaprolactone (PCL) biodegradable polymer in the pellets form. The morphological accuracy of the printed scaffolds was investigated by scanning electron microscope (SEM). The investigation results confirm the accurateness of the proposed HISPE module in printing high-precision models.

References

1.
Ustundag
,
A.
, and
Cevikcan
,
E.
,
2018
,
Industry 4.0: Managing The Digital Transformation
,
Springer International Publishing
,
Cham
.
2.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B: Eng.
,
143
, pp.
172
196
.
3.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, pp.
1
10
.
4.
Mohr
,
S.
, and
Khan
,
O.
,
2015
, “
3D Printing and Its Disruptive Impacts on Supply Chains of the Future
,”
Technol. Innov. Manage. Rev.
,
5
(
11
), pp.
20
25
.
5.
Zhao
,
D.
, and
Guo
,
W.
,
2020
, “
Shape and Performance Controlled Advanced Design for Additive Manufacturing: A Review of Slicing and Path Planning
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
010801
.
6.
Beaman
,
J. J.
,
Bourell
,
D. L.
,
Seepersad
,
C. C.
, and
Kovar
,
D.
,
2020
, “
Additive Manufacturing Review: Early Past to Current Practice
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110812
.
7.
Cattenone
,
A.
,
Morganti
,
S.
,
Alaimo
,
G.
, and
Auricchio
,
F.
,
2019
, “
Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011010
.
8.
Imani
,
F.
,
Chen
,
R.
,
Diewald
,
E.
,
Reutzel
,
E.
, and
Yang
,
H.
,
2019
, “
Deep Learning of Variant Geometry in Layerwise Imaging Profiles for Additive Manufacturing Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111001
.
9.
Chueh
,
Y.-H.
,
Zhang
,
X.
,
Wei
,
C.
,
Sun
,
Z.
, and
Li
,
L.
,
2020
, “
Additive Manufacturing of Polymer-Metal/Ceramic Functionally Graded Composite Components via Multiple Material Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
051003
.
10.
Liu
,
J.
, and
Yu
,
H.
,
2020
, “
Self-Support Topology Optimization With Horizontal Overhangs for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091003
.
11.
Wheat
,
E.
,
Shanbhag
,
G.
, and
Vlasea
,
M.
,
2020
, “
The Master Sinter Curve and Its Application to Binder Jetting Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101002
.
12.
Jiang
,
L.
,
Ye
,
H.
,
Zhou
,
C.
, and
Chen
,
S.
,
2019
, “
Parametric Topology Optimization Toward Rational Design and Efficient Prefabrication for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041007
.
13.
Taheri
,
H.
,
Koester
,
L. W.
,
Bigelow
,
T. A.
,
Faierson
,
E. J.
, and
Bond
,
L. J.
,
2019
, “
In situ Additive Manufacturing Process Monitoring With an Acoustic Technique: Clustering Performance Evaluation Using K-Means Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041011
.
14.
Kim
,
N. P.
,
Eo
,
J. S.
, and
Cho
,
D.
,
2018
, “
Optimization of Piston Type Extrusion (PTE) Techniques for 3D Printed Food
,”
J. Food Eng.
,
235
, pp.
41
49
.
15.
Zhu
,
Z.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2019
, “
Statistical Modal Analysis for Out-of-Plane Deviation Prediction in Additive Manufacturing Based on Finite Element Simulation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111011
.
16.
Wu
,
H.
,
Fahy
,
W. P.
,
Kim
,
S.
,
Kim
,
H.
,
Zhao
,
N.
,
Pilato
,
L.
,
Kafi
,
A.
,
Bateman
,
S.
, and
Koo
,
J. H.
,
2020
, “
Recent Developments in Polymers/Polymer Nanocomposites for Additive Manufacturing
,”
Prog. Mater. Sci.
,
111
, p.
100638
.
17.
Conner
,
B. P.
,
Manogharan
,
G. P.
,
Martof
,
A. N.
,
Rodomsky
,
L. M.
,
Rodomsky
,
C. M.
,
Jordan
,
D. C.
, and
Limperos
,
J. W.
,
2014
, “
Making Sense of 3-D Printing: Creating a Map of Additive Manufacturing Products and Services
,”
Addit. Manuf.
,
1
, pp.
64
76
.
18.
Jiang
,
R.
,
Kleer
,
R.
, and
Piller
,
F. T.
,
2017
, “
Predicting the Future of Additive Manufacturing: A Delphi Study on Economic and Societal Implications of 3D Printing for 2030
,”
Technol. Forecast. Soc. Change
,
117
, pp.
84
97
.
19.
Attaran
,
M.
,
2017
, “
Additive Manufacturing: The Most Promising Technology to Alter the Supply Chain and Logistics
,”
J. Serv. Sci. Manage.
,
10
(
03
), pp.
189
206
.
20.
Oliveira
,
J. P.
,
Santos
,
T. G.
, and
Miranda
,
R. M.
,
2020
, “
Revisiting Fundamental Welding Concepts to Improve Additive Manufacturing: From Theory to Practice
,”
Prog. Mater. Sci.
,
107
, p.
100590
.
21.
Kalaskar
,
D. M.
,
2019
,
3D Printing in Medicine
,
Woodhead Publishing
,
Cambridge, UK
.
22.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies
,
Springer New York
,
New York
.
23.
Hahn
,
F.
,
Jensen
,
S.
, and
Tanev
,
S.
,
2014
, “
Disruptive Innovation vs Disruptive Technology: The Disruptive Potential of the Value Propositions of 3D Printing Technology Startups
,”
Technol. Innov. Manage. Rev.
,
4
(
12
), pp.
27
36
.
24.
Hull
,
C. W.
,
1986
, “
Apparatus for Production of Three-Dimensional Objects by Stereolithography
,” US Patent No. 4575330.
25.
Crump
,
S. S.
,
1992
, “
Apparatus and Method for Creating Three-Dimensional Objects
,” US Patent No. 5121329.
26.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.—Manuf. Technol.
,
65
(
2
), pp.
737
760
.
27.
Li
,
M.
,
Du
,
W.
,
Elwany
,
A.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Metal Binder Jetting Additive Manufacturing: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
090801
.
28.
Du
,
W.
,
Ren
,
X.
,
Pei
,
Z.
, and
Ma
,
C.
,
2020
, “
Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
040801
.
29.
ISO/ASTM52900-15
,
2015
,
Standard Terminology for Additive Manufacturing—General Principles—Terminology
,
ASTM International
,
West Conshohocken, PA
.
30.
Bessler
,
N.
,
Ogiermann
,
D.
,
Buchholz
,
M. B.
,
Santel
,
A.
,
Heidenreich
,
J.
,
Ahmmed
,
R.
,
Zaehres
,
H.
, and
Brand-Saberi
,
B.
,
2019
, “
Nydus One Syringe Extruder (NOSE): A Prusa I3 3D Printer Conversion for Bioprinting Applications Utilizing the FRESH-Method
,”
HardwareX
,
6
, p.
e00069
.
31.
Knofius
,
N.
,
van der Heijden
,
M. C.
, and
Zijm
,
W. H. M.
,
2019
, “
Moving to Additive Manufacturing for Spare Parts Supply
,”
Comput. Ind.
,
113
, p.
103134
.
32.
Bhardwaj
,
A.
,
Jones
,
S. Z.
,
Kalantar
,
N.
,
Pei
,
Z.
,
Vickers
,
J.
,
Wangler
,
T.
,
Zavattieri
,
P.
, and
Zou
,
N.
,
2019
, “
Additive Manufacturing Processes for Infrastructure Construction: A Review
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), p.
091010
.
33.
Roy
,
M.
,
Yavari
,
R.
,
Zhou
,
C.
,
Wodo
,
O.
, and
Rao
,
P.
,
2019
, “
Prediction and Experimental Validation of Part Thermal History in the Fused Filament Fabrication Additive Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
12
), p.
121001
.
34.
Marchewka
,
J.
, and
Laska
,
J.
,
2020
, “
Processing of Poly-l-Lactide and Poly(l-Lactide-Co-Trimethylene Carbonate) Blends by Fused Filament Fabrication and Fused Granulate Fabrication Using RepRap 3D Printer
,”
Int. J. Adv. Manuf. Technol.
,
106
(
11–12
), pp.
4933
4944
.
35.
Whyman
,
S.
,
Arif
,
K. M.
, and
Potgieter
,
J.
,
2018
, “
Design and Development of an Extrusion System for 3D Printing Biopolymer Pellets
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3417
3428
.
36.
Matias
,
E.
, and
Rao
,
B.
,
2015
, “
3D Printing: On its Historical Evolution and the Implications for Business
,”
Proceedings of Portland International Conference on Management of Engineering and Technology (PICMET)
,
Portland, OR
,
Aug. 2–6
, IEEE, pp.
551
558
.
37.
Pusch
,
K.
,
Hinton
,
T. J.
, and
Feinberg
,
A. W.
,
2018
, “
Large Volume Syringe Pump Extruder for Desktop 3D Printers
,”
HardwareX
,
3
, pp.
49
61
.
38.
Holland
,
D.
,
O’Donnell
,
G.
, and
Bennett
,
G.
,
2010
, “
Open Design and the RepRap Project
,”
Proceedings of 27th International Manufacturing Conference
,
Galway, Ireland
,
Sept. 1–3
, pp.
97
106
.
39.
Turner
,
B. N.
, and
Gold
,
S. A.
,
2015
, “
A Review of Melt Extrusion Additive Manufacturing Processes: II. Materials, Dimensional Accuracy, and Surface Roughness
,”
Rapid Prototyping J.
,
21
(
3
), pp.
250
261
.
40.
Lanzotti
,
A.
,
Martorelli
,
M.
, and
Staiano
,
G.
,
2015
, “
Understanding Process Parameter Effects of RepRap Open-Source Three-Dimensional Printers Through a Design of Experiments Approach
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011017
.
41.
von Krogh
,
P.
,
2017
, “
Direct Pellet Extruder Developed for LEDC 3D-Print With Recycled Plastics
,”
M.Sc. thesis
,
Lund University
,
Lund, Sweden
.
42.
Klar
,
V.
,
Pearce
,
J. M.
,
Kärki
,
P.
, and
Kuosmanen
,
P.
,
2019
, “
Ystruder: Open Source Multifunction Extruder With Sensing and Monitoring Capabilities
,”
HardwareX
,
6
, p.
e00080
.
43.
Alexandre
,
A.
,
Cruz Sanchez
,
F. A.
,
Boudaoud
,
H.
,
Camargo
,
M.
, and
Pearce
,
J. M.
,
2020
, “
Mechanical Properties of Direct Waste Printing of Polylactic Acid With Universal Pellets Extruder: Comparison to Fused Filament Fabrication on Open-Source Desktop Three-Dimensional Printers
,”
3D Print. Addit. Manuf.
,
7
(
5
), pp.
237
247
.
44.
McAlister
,
C.
, and
Wood
,
J.
,
2014
, “
The Potential of 3D Printing to Reduce the Environmental Impacts of Production
,”
Proceedings of ECEEE Industrial Summer Study
,
Arnhem, The Netherlands
,
June 2–5
, pp.
213
221
.
45.
Silveira
,
Z. d. C.
,
de Freitas
,
M. S.
,
Neto
,
P. I.
,
Noritomi
,
P. Y.
, and
da Silva
,
J. V. L.
,
2014
, “
Design Development and Functional Validation of an Interchangeable Head Based on Mini Screw Extrusion Applied in an Experimental Desktop 3-D Printer
,”
Int. J. Rapid Manuf.
,
4
(
1
), p.
49
.
46.
Janmohammadi
,
M.
, and
Nourbakhsh
,
M. S.
,
2020
, “
Recent Advances on 3D Printing in Hard and Soft Tissue Engineering
,”
Int. J. Polym. Mater. Polym. Biomater.
,
69
(
7
), pp.
449
466
.
47.
Liu
,
S.
,
Zhao
,
P.
,
Wu
,
S.
,
Zhang
,
C.
,
Fu
,
J.
, and
Chen
,
Z.
,
2019
, “
A Pellet 3D Printer: Device Design and Process Parameters Optimization
,”
Adv. Polym. Technol.
,
2019
, pp.
1
8
.
48.
Booeshaghi
,
A. S.
,
da Veiga Beltrame
,
E.
,
Bannon
,
D.
,
Gehring
,
J.
, and
Pachter
,
L.
,
2019
, “
Principles of Open Source Bioinstrumentation Applied to the Poseidon Syringe Pump System
,”
Sci. Rep.
,
9
(
1
), p.
12385
.
49.
Wijnen
,
B.
,
Hunt
,
E. J.
,
Anzalone
,
G. C.
,
Pearce
,
J. M.
, and
Gilestro
,
G. F.
,
2014
, “
Open-Source Syringe Pump Library
,”
PLoS One
,
9
(
9
), p.
e107216
.
50.
Udofia
,
E. N.
, and
Zhou
,
W.
,
2019
, “
A Guiding Framework for Microextrusion Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
050801
.
51.
Hambach
,
M.
,
Rutzen
,
M.
, and
Volkmer
,
D.
,
2019
, “
Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste
,”
Cem. Conc. Compos.
,
79
, pp.
62
70
.
52.
Malaeb
,
Z.
,
AlSakka
,
F.
, and
Hamzeh
,
F.
,
2019
, “3D Concrete Printing: Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups,”
3D Concrete Printing Technology
,
G.
Sanjayan
,
A.
Nazari
, and
B.
Nematollahi
, eds.,
Elsevier
,
New York
, pp.
115
136
.
53.
Hu
,
L.
, and
Jiang
,
G.
,
2017
, “
3D Printing Techniques in Environmental Science and Engineering Will Bring New Innovation
,”
Environ. Sci. Technol.
,
51
(
7
), pp.
3597
3599
.
54.
Morrow
,
J.
,
Hemleben
,
S.
, and
Menguc
,
Y.
,
2017
, “
Directly Fabricating Soft Robotic Actuators With an Open-Source 3-D Printer
,”
IEEE Rob. Autom. Lett.
,
2
(
1
), pp.
277
281
.
55.
Liu
,
D.
,
Nie
,
W.
,
Li
,
D.
,
Wang
,
W.
,
Zheng
,
L.
,
Zhang
,
J.
,
Zhang
,
J.
,
Peng
,
C.
,
Mo
,
X.
, and
He
,
C.
,
2019
, “
3D Printed PCL/SrHA Scaffold for Enhanced Bone Regeneration
,”
Chem. Eng. J.
,
362
, pp.
269
279
.
56.
Koh
,
Y.-H.
,
Jun
,
I.-K.
, and
Kim
,
H.-E.
,
2006
, “
Fabrication of Poly(ε-Caprolactone)/Hydroxyapatite Scaffold Using Rapid Direct Deposition
,”
Mater. Lett.
,
60
(
9–10
), pp.
1184
1187
.
57.
Choi
,
J. W.
,
Lee
,
K.
,
Koh
,
Y. H.
, and
Kim
,
H. E.
,
2020
, “
Novel Poly(ε-Caprolactone) Scaffolds Comprised of Tailored Core/Shell-Structured Filaments Using 3D Plotting Technique
,”
Mater. Lett.
,
269
, p.
127659
.
58.
Zhang
,
W.
,
Ullah
,
I.
,
Shi
,
L.
,
Zhang
,
Y.
,
Ou
,
H.
,
Zhou
,
J.
,
Ullah
,
M. W.
,
Zhang
,
X.
, and
Li
,
W.
,
2019
, “
Fabrication and Characterization of Porous Polycaprolactone Scaffold via Extrusion-Based Cryogenic 3D Printing for Tissue Engineering
,”
Mater. Des.
,
180
, p.
107946
.
59.
Atala
,
A.
, and
Forgacs
,
G.
,
2019
, “
Three-Dimensional Bioprinting in Regenerative Medicine: Reality, Hype, and Future
,”
Stem Cells Transl. Med.
,
8
(
8
), pp.
744
745
.
60.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.
61.
Derakhshanfar
,
S.
,
Mbeleck
,
R.
,
Xu
,
K.
,
Zhang
,
X.
,
Zhong
,
W.
, and
Xing
,
M.
,
2018
, “
3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances
,”
Bioact. Mater.
,
3
(
2
), pp.
144
156
.
62.
Sundaramurthi
,
D.
,
Rauf
,
S.
, and
Hauser
,
C. A. E.
,
2016
, “
3D Bioprinting Technology for Regenerative Medicine Applications
,”
Int. J. Bioprint.
,
2
(
2
), pp.
9
26
.
63.
Huang
,
Y.
,
Zhang
,
X.-F.
,
Gao
,
G.
,
Yonezawa
,
T.
, and
Cui
,
X.
,
2017
, “
3D Bioprinting and the Current Applications in Tissue Engineering
,”
Biotechnol. J.
,
12
(
8
), p.
1600734
.
64.
Lobo
,
D. A.
, and
Ginestra
,
P.
,
2019
, “
Cell Bioprinting: The 3D-BioplotterTM Case
,”
Materials
,
12
(
23
), p.
4005
.
65.
Mandrycky
,
C.
,
Wang
,
Z.
,
Kim
,
K.
, and
Kim
,
D. H.
,
2016
, “
3D Bioprinting for Engineering Complex Tissues
,”
Biotechnol. Adv.
,
34
(
4
), pp.
422
434
.
66.
Hospodiuk
,
M.
,
Moncal
,
K. K.
,
Dey
,
M.
, and
Ozbolat
,
I. T.
,
2018
, “Extrusion-Based Biofabrication in Tissue Engineering and Regenerative Medicine,”
3D Printing and Biofabrication
,
A
Ovsianikov
,
J
Yoo
, and
V
Mironov
, eds.,
Springer International Publishing
,
Cham
, pp.
255
281
.
67.
Gillispie
,
G.
,
Prim
,
P.
,
Copus
,
J.
,
Fisher
,
J.
,
Mikos
,
A. G.
,
Yoo
,
J. J.
,
Atala
,
A.
, and
Lee
,
S. J.
,
2020
, “
Assessment Methodologies for Extrusion-Based Bioink Printability
,”
Biofabrication
,
12
(
2
), p.
022003
.
68.
Jiang
,
T.
,
Munguia-Lopez
,
J. G.
,
Flores-Torres
,
S.
,
Kort-Mascort
,
J.
, and
Kinsella
,
J. M.
,
2019
, “
Extrusion Bioprinting of Soft Materials: An Emerging Technique for Biological Model Fabrication
,”
Appl. Phys. Rev.
,
6
(
1
), p.
011310
.
69.
Pati
,
F.
,
Jang
,
J.
,
Lee
,
J. W.
, and
Cho
,
D.-W.
,
2015
, “Extrusion Bioprinting,”
Essentials of 3D Biofabrication and Translation
,
A.
Atala
, and
J.
Yoo
, eds.,
Elsevier
,
New York
, pp.
123
152
.
70.
Placone
,
J. K.
, and
Engler
,
A. J.
,
2018
, “
Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications
,”
Adv. Healthcare Mater.
,
7
(
8
), p.
1701161
.
71.
Ozbolat
,
I. T.
, and
Hospodiuk
,
M.
,
2016
, “
Current Advances and Future Perspectives in Extrusion-Based Bioprinting
,”
Biomaterials
,
76
, pp.
321
343
.
72.
Kahl
,
M.
,
Gertig
,
M.
,
Hoyer
,
P.
,
Friedrich
,
O.
, and
Gilbert
,
D. F.
,
2019
, “
Ultra-low-Cost 3D Bioprinting: Modification and Application of an Off-the-Shelf Desktop 3D-Printer for Biofabrication
,”
Front. Bioeng. Biotechnol.
,
7
, pp.
1
12
.
73.
Moncal
,
K. K.
,
Ozbolat
,
V.
,
Datta
,
P.
,
Heo
,
D. N.
, and
Ozbolat
,
I. T.
,
2019
, “
Thermally-Controlled Extrusion-Based Bioprinting of Collagen
,”
J. Mater. Sci. Mater. Med.
,
30
(
5
), pp.
1
14
.
74.
Lipton
,
J.
,
MacCurdy
,
R.
,
Boban
,
M.
,
Chartrain
,
N.
,
Withers
,
L.
,
Gangjee
,
N.
,
Nagai
,
A.
,
Cohen
,
J.
,
Liu
,
K. S. J.
,
Qudsi
,
H.
,
Kaufman
,
J.
,
Mitra
,
S.
,
Garcia
,
A.
,
McNicoll
,
A.
, and
Lipson
,
H.
,
2011
, “
Fab@Home Model 3: A More Robust, Cost Effective and Accessible Open Hardware Fabrication Platform
,”
Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF 2011
,
Austin, TX
,
Aug. 6–8
, pp.
125
135
.
75.
Thick Paste Extruder Toolhead—Zmorph Store
,” https://support.zmorph3d.com/hc/en-us/articles/360011747539-Thick-Paste-Extruder-Specification, Accessed February 21, 2021.
76.
Discov3ry—Structur3D.Io | Disrupting the Status Quo
,” https://www.structur3d.io/discov3ry-kits-accessories/discov3ry, Accessed February 21, 2021.
77.
Jiao
,
Z.
,
Luo
,
B.
,
Xiang
,
S.
,
Ma
,
H.
,
Yu
,
Y.
, and
Yang
,
W.
,
2019
, “
3D Printing of HA/PCL Composite Tissue Engineering Scaffolds
,”
Adv. Ind. Eng. Polym. Res.
,
2
(
4
), pp.
196
202
.
78.
Universal Paste Extruder for 3D Printers by RichRap—Thingiverse
,” https://www.thingiverse.com/thing:20733, Accessed February 21, 2021.
79.
Tashman
,
J. W.
,
Shiwarski
,
D. J.
, and
Feinberg
,
A. W.
,
2021
, “
A High Performance Open-Source Syringe Extruder Optimized for Extrusion and Retraction During FRESH 3D Bioprinting
,”
HardwareX
,
9
, p.
e00170
.
You do not currently have access to this content.