Abstract

In machining processes, regenerative chatter is an unstable vibration which adversely affects surface finish, cutting tools, and spindle bearings. Under some cutting conditions, the beat effect, an interference pattern between two periodical vibrations of slightly different frequencies, has been a common phenomenon where the amplitude of chatter vibration tends to increase and decrease periodically. Until now, few studies have been conducted to analyze the beat effect in machining chatter. On the other hand, researchers have developed various chatter detection methods with the objective to timely avoid detrimental effects induced by chatter. However, none of the existing chatter detection methods in the literature has ever considered the beat effect. The neglect of the beat effect will adversely affect the effectiveness of these methods and even result in false alarms. In this paper, the significance level and the mechanism of the beat effect in turning chatter are analyzed by time domain simulation. Afterward, a multiscale wavelet packet entropy (MWPE) method is proposed to detect machining chatter regardless of the occurrence of the beat effect. The determination strategy of the scale factor in the MWPE is presented based on the beat period, whose relationship with the damping ratio and spindle speed is derived analytically in orthogonal turning scenarios. Finally, machining tests are conducted to verify the feasibility and effectiveness of the proposed chatter detection method with respect to the presence and absence of the beat effect.

References

1.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
. 10.1016/j.ijmachtools.2011.01.001
2.
Siddhpura
,
M.
, and
Paurobally
,
R.
,
2012
, “
A Review of Chatter Vibration Research in Turning
,”
Int. J. Mach. Tools Manuf.
,
61
(
10
), pp.
27
47
. 10.1016/j.ijmachtools.2012.05.007
3.
Jemielniak
,
K.
, and
Widota
,
A.
,
1989
, “
The Development of Frequency and Amplitude of Chatter Vibration
,”
Int. J. Mach. Tools Manuf.
,
29
(
2
), pp.
249
256
. 10.1016/0890-6955(89)90036-9
4.
Stépán
,
G.
,
2001
, “
Modelling Nonlinear Regenerative Effects in Metal Cutting
,”
Ph. Trans. Roy. Soci. Lond. Ser. A: Math. Phys. Eng. Sci.
,
359
(
1781
), pp.
739
757
. 10.1098/rsta.2000.0753
5.
Tarng
,
Y. S.
,
Kao
,
J. K.
, and
Lee
,
E. C.
,
2000
, “
Chatter Suppression in Turning Operations With a Tuned Vibration Absorber
,”
J. Mater. Process. Technol.
,
105
(
1–2
), pp.
55
60
. 10.1016/S0924-0136(00)00585-9
6.
Fu
,
Z.
,
Zhang
,
X.
,
Wang
,
X.
, and
Yang
,
W.
,
2014
, “
Analytical Modeling of Chatter Vibration in Orthogonal Cutting Using a Predictive Force Model
,”
Int. J. Mech. Sci.
,
88
, pp.
145
153
. 10.1016/j.ijmecsci.2014.08.005
7.
Ding
,
Y.
,
Niu
,
J.
,
Zhu
,
L.
, and
Ding
,
H.
,
2015
, “
Differential Quadrature Method for Stability Analysis of Dynamic Systems With Multiple Delays: Application to Simultaneous Machining Operations
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
024501
. 10.1115/1.4028832
8.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121004
. 10.1115/1.4041250
9.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
. 10.1115/1.1765139
10.
Bediaga
,
I.
,
Munoa
,
J.
,
Hernández
,
J.
, and
De Lacalle
,
L. L.
,
2009
, “
An Automatic Spindle Speed Selection Strategy to Obtain Stability in High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
49
(
5
), pp.
384
394
. 10.1016/j.ijmachtools.2008.12.003
11.
Merino
,
R.
,
Barrenetxea
,
D.
,
Munoa
,
J.
, and
Dombovari
,
Z.
,
2019
, “
Analysis of the Beating Frequencies in Dressing and Its Effect in Surface Waviness
,”
CIRP Ann.
,
68
(
1
), pp.
353
356
. 10.1016/j.cirp.2019.04.080
12.
Albertelli
,
P.
,
Braghieri
,
L.
,
Torta
,
M.
, and
Monno
,
M.
,
2019
, “
Development of a Generalized Chatter Detection Methodology for Variable Speed Machining
,”
Mech. Syst. Signal Process.
,
123
, pp.
26
42
. 10.1016/j.ymssp.2019.01.002
13.
Tao
,
J. F.
,
Qin
,
C. J.
,
Xiao
,
D. Y.
,
Shi
,
H. T.
,
Ling
,
X.
,
Li
,
B.
, and
Liu
,
C. L.
,
2019
, “
Timely Chatter Identification for Robotic Drilling Using a Local Maximum Synchrosqueezing-Based Method
,”
J. Intell. Manuf.
,
31
(
5
), pp.
1243
1255
. 10.1007/s10845-019-01509-5
14.
Tangjitsitcharoen
,
S.
,
2009
, “
In-process Monitoring and Detection of Chip Formation and Chatter for CNC Turning
,”
J. Mater. Process. Technol.
,
209
(
10
), pp.
4682
4688
. 10.1016/j.jmatprotec.2008.10.054
15.
Schmitz
,
T.
,
2003
, “
Chatter Recognition by a Statistical Evaluation of the Synchronously Sampled Audio Signal
,”
J. Sound Vib.
,
262
(
3
), pp.
721
730
. 10.1016/S0022-460X(03)00119-6
16.
Chiou
,
R. Y.
, and
Liang
,
S. Y.
,
2000
, “
Analysis of Acoustic Emission in Chatter Vibration With Tool Wear Effect in Turning
,”
Int. J. Mach. Tools Manuf.
,
40
(
7
), pp.
927
941
. 10.1016/S0890-6955(99)00093-0
17.
Abu-Zahra
,
N. H.
, and
Lange
,
J. H.
,
2002
, “
Tool Chatter Monitoring in Turning Operations Using Wavelet Analysis of Ultrasound Waves
,”
Int. J. Adv. Manuf. Technol.
,
20
(
4
), pp.
248
254
. 10.1007/s001700200149
18.
Morita
,
H.
, and
Yamashita
,
T.
,
2012
, “
Tracing and Visualizing Variation of Chatter for In-Process Identification of Preferred Spindle Speeds
,”
Procedia CIRP
,
4
, pp.
11
16
. 10.1016/j.procir.2012.10.003
19.
Hynynen
,
K. M.
,
Ratava
,
J.
,
Lindh
,
T.
,
Rikkonen
,
M.
,
Ryynänen
,
V.
,
Lohtander
,
M.
, and
Varis
,
J.
,
2014
, “
Chatter Detection in Turning Processes Using Coherence of Acceleration and Audio Signals
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
044503
. 10.1115/1.4026948
20.
Tao
,
J. F.
,
Qin
,
C. J.
,
Xiao
,
D. Y.
,
Shi
,
H. T.
, and
Liu
,
C. L.
,
2019
, “
A Pre-Generated Matrix-Based Method for Real-Time Robotic Drilling Chatter Monitoring
,”
Chinese J. Aeronaut.
,
32
(
12
), pp.
2755
2764
. 10.1016/j.cja.2019.09.001
21.
Yang
,
K.
,
Wang
,
G.
, and
Dong
,
Y.
,
2019
, “
Early Chatter Identification Based on an Optimized Variational Mode Decomposition
,”
Mech. Syst. Signal Process.
,
115
, pp.
238
254
. 10.1016/j.ymssp.2018.05.052
22.
Cao
,
H. R.
,
Lei
,
Y. G.
, and
He
,
Z. J.
,
2013
, “
Chatter Identification in End Milling Process Using Wavelet Packets and Hilbert-Huang Transform
,”
Int. J. Mach. Tools Manuf.
,
69
, pp.
11
19
. 10.1016/j.ijmachtools.2013.02.007
23.
Kuljanic
,
E.
,
Totis
,
G.
, and
Sortino
,
M.
,
2009
, “
Development of an Intelligent Multi-Sensor Chatter Detection System in Milling
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1704
1718
. 10.1016/j.ymssp.2009.01.003
24.
Qian
,
S.
,
Sun
,
Y.
, and
Xiong
,
Z.
,
2015
, “
Intelligent Chatter Detection Based on Wavelet Packet Node Energy and LSSVM-RFE
,”
IEEE International Conference on Advanced Intelligent Mechatronics
,
Pusan, Korea
,
July 7–11
, pp.
1914
1915
.
25.
Khorasani
,
A. M.
,
Aghchai
,
A. J.
, and
Khorram
,
A.
,
2011
, “
Chatter Prediction in Turning Process of Conical Workpieces by Using Case-Based Reasoning (CBR) Method and Taguchi Design of Experiment
,”
Int. J. Adv. Manuf. Technol.
,
55
(
5–8
), pp.
457
464
. 10.1007/s00170-010-3060-1
26.
Devillez
,
A.
, and
Daniel
,
D.
,
2007
, “
Tool Vibration Detection With Eddy Current Sensors in Machining Process and Computation of Stability Lobes Using Fuzzy Classifiers
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
441
456
. 10.1016/j.ymssp.2005.11.007
27.
Fu
,
Y.
,
Zhang
,
Y.
,
Gao
,
Y.
,
Gao
,
H.
,
Mao
,
T.
,
Zhou
,
H.
, and
Li
,
D.
,
2017
, “
Machining Vibration States Monitoring Based on Image Representation Using Convolutional Neural Networks
,”
Eng. Appl. Artif. Intel.
,
65
, pp.
240
251
. 10.1016/j.engappai.2017.07.024
28.
Nair
,
U.
,
Krishna
,
B. M.
,
Namboothiri
,
V. N. N.
, and
Nampoori
,
V. P. N.
,
2010
, “
Permutation Entropy Based Real-Time Chatter Detection Using Audio Signal in Turning Process
,”
Int. J. Adv. Manuf. Technol.
,
46
(
1–4
), pp.
61
68
. 10.1007/s00170-009-2075-y
29.
Grabec
,
I.
,
Gradišek
,
J.
, and
Govekar
,
E.
,
1999
, “
A new Method for Chatter Detection in Turning
,”
CIRP Ann-Manuf. Technol.
,
48
(
1
), pp.
29
32
. 10.1016/S0007-8506(07)63125-4
30.
Pérez-Canales
,
D.
,
Álvarez-Ramírez
,
J.
,
Jáuregui-Correa
,
J. C.
,
Vela-Martínez
,
L.
, and
Herrera-Ruiz
,
G.
,
2011
, “
Identification of Dynamic Instabilities in Machining Process Using the Approximate Entropy Method
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
556
564
. 10.1016/j.ijmachtools.2011.02.004
31.
Sun
,
Y.
, and
Xiong
,
Z.
,
2016
, “
An Optimal Weighted Wavelet Packet Entropy Method With Application to Real-Time Chatter Detection
,”
IEEE/ASME Trans. Mech.
,
21
(
4
), pp.
2004
2014
. 10.1109/TMECH.2016.2547481
32.
van Dijk
,
N. J. M.
,
Doppenberg
,
E. J. J.
,
Faassen
,
R. P. H.
,
van de Wouw
,
N.
,
Oosterling
,
J. A. J.
, and
Nijmeijer
,
H.
,
2010
, “
Automatic In-Process Chatter Avoidance in the High-Speed Milling Process
,”
ASME J. Dyn. Syst. Measur. Contr.
,
132
(
3
), p.
031006
. 10.1115/1.4000821
33.
Ding
,
L.
,
Sun
,
Y.
, and
Xiong
,
Z.
,
2018
, “
Online Chatter Suppression in Turning by Adaptive Amplitude Modulation of Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121003
. 10.1115/1.4041248
34.
Delio
,
T.
,
Tlusty
,
J.
, and
Smith
,
S.
,
1992
, “
Use of Audio Signals for Chatter Detection and Control
,”
ASME J. Eng. Ind.
,
114
(
2
), pp.
146
157
. 10.1115/1.2899767
35.
Zhang
,
Z. X.
,
Zhang
,
Q.
,
Li
,
X. L.
, and
Qian
,
T. L.
,
2011
, “
The Whole-Beat Correlation Method for the Identification of an Unbalance Response of a Dual-Rotor System With a Slight Rotating Speed Difference
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1667
1673
. 10.1016/j.ymssp.2010.12.001
36.
Li
,
X.
,
Huo
,
L.
, and
Li
,
H.
,
2012
, “
Beat Phenomenon Analysis of Concrete Beam With Piezoelectric Sensors
,”
Int. J. Distrib. Sens. N.
,
8
(
9
), p.
296124
. 10.1155/2012/296124
37.
Sims
,
N. D.
,
Mann
,
B.
, and
Huyanan
,
S.
,
2008
, “
Analytical Prediction of Chatter Stability for Variable Pitch and Variable Helix Milling Tools
,”
J. Sound Vib.
,
317
(
3–5
), pp.
664
686
. 10.1016/j.jsv.2008.03.045
38.
Qin
,
C. J.
,
Tao
,
J. F.
,
Xiao
,
D. Y.
,
Shi
,
H. T.
,
Li
,
B.
, and
Liu
,
C. L.
, “
A Novel Chebyshev-Wavelet-Based Approach for Accurate and Fast Prediction of Milling Stability
,”
Precis. Eng.
,
62
, pp.
244
255
. 10.1016/j.precisioneng.2019.11.016
39.
Ganguli
,
A.
,
Deraemaeker
,
A.
, and
Preumont
,
A.
,
2007
, “
Regenerative Chatter Reduction by Active Damping Control
,”
J. Sound Vibr.
,
300
(
3–5
), pp.
847
862
. 10.1016/j.jsv.2006.09.005
40.
Urbikain
,
G.
,
López de Lacalle
,
L. N.
,
Campa
,
F. J.
,
Fernández
,
A.
, and
Elías
,
A.
,
2012
, “
Stability Prediction in Straight Turning of a Flexible Workpiece by Collocation Method
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
73
81
. 10.1016/j.ijmachtools.2011.11.008
41.
Lu
,
K.
,
Lian
,
Z.
,
Gu
,
F.
, and
Liu
,
H.
,
2018
, “
Model-based Chatter Stability Prediction and Detection for the Turning of a Flexible Workpiece
,”
Mech. Syst. Signal Process.
,
100
(
2
), pp.
814
826
. 10.1016/j.ymssp.2017.08.022
42.
Tobias
,
S. A.
, and
Fishwick
,
W.
,
1958
, “
The Chatter of Lathe Tools Under Orthogonal Cutting Conditions
,”
ASME Trans.
,
80
, pp.
1079
1088
.
43.
Tlusty
,
J.
, and
Polacek
,
M.
,
1963
, “
The Stability of Machine Tools Against Self-Excited Vibrations in Machining
,”
International Research in Production Engineering
,
Pittsburg, PA
,
Sept. 9–12
,
ASME
, pp.
465
474
.
44.
Wang
,
W.
, and
Jianu
,
O. A.
,
2010
, “
A Smart Sensing Unit for Vibration Measurement and Monitoring
,”
IEEE/ASME Trans. Mech.
,
15
(
1
), pp.
70
78
. 10.1109/TMECH.2009.2016956
45.
Zheng
,
J.
,
Pan
,
H.
,
Yang
,
S.
, and
Cheng
,
J.
,
2018
, “
Generalized Composite Multiscale Permutation Entropy and Laplacian Score Based Rolling Bearing Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
99
, pp.
229
243
. 10.1016/j.ymssp.2017.06.011
46.
Li
,
Y.
,
Yang
,
Y.
,
Li
,
G.
,
Xu
,
M.
, and
Huang
,
W.
,
2017
, “
A Fault Diagnosis Scheme for Planetary Gearboxes Using Modified Multi-Scale Symbolic Dynamic Entropy and mRMR Feature Selection
,”
Mech. Syst. Signal Process.
,
91
, pp.
295
312
. 10.1016/j.ymssp.2016.12.040
47.
Li
,
Y.
,
Li
,
G.
,
Yang
,
Y.
,
Liang
,
X.
, and
Xu
,
M.
,
2018
, “
A Fault Diagnosis Scheme for Planetary Gearboxes Using Adaptive Multi-Scale Morphology Filter and Modified Hierarchical Permutation Entropy
,”
Mech. Syst. Signal Process.
,
105
, pp.
319
337
. 10.1016/j.ymssp.2017.12.008
48.
Wu
,
S.-D.
,
Wu
,
C.-W.
,
Lee
,
K.-Y.
, and
Lin
,
S.-G.
,
2013
, “
Modified Multiscale Entropy for Short-Term Time Series Analysis
,”
Phys. A
,
392
(
23
), pp.
5865
5873
. 10.1016/j.physa.2013.07.075
49.
Govindan
,
R. B.
,
Wilson
,
J. D.
,
Eswaran
,
H.
,
Lowery
,
C. L.
, and
Preissl
,
H.
,
2007
, “
Revisiting Sample Entropy Analysis
,”
Phys. A
,
376
, pp.
158
164
. 10.1016/j.physa.2006.10.077
50.
Costa
,
M.
,
Goldberger
,
A. L.
, and
Peng
,
C.-K.
,
2002
, “
Multiscale Entropy Analysis of Complex Physiologic Time Series
,”
Phys. Rev. Lett.
,
89
(
6
), p.
68102
. 10.1103/PhysRevLett.89.068102
51.
Toh
,
C. K.
,
2004
, “
Vibration Analysis in High Speed Rough and Finish Milling Hardened Steel
,”
J. Sound Vibr.
,
278
(
1–2
), pp.
101
115
. 10.1016/j.jsv.2003.11.012
You do not currently have access to this content.