Abstract

The present study aimed to braze interstitial free (IF) steel by using novel Braze+ and conventional Robacta torches with the aid of CuAl8 filler wire for a range of heat input 72–250 J/mm. Results showed that focused/denser arc and smaller arc action range, i.e., lower heat loss in the case of Braze+ torch resulted in better wettability, thicker intermetallic layer at the interface of deposited bead-steel, and higher dispersive phase fraction in the bead compared to Robacta torch which ultimately contributed to the evolution of mechanical properties of brazed joints. Furthermore, wettability, thickness of intermetallic layer and fraction of dispersive phases increased with the heat input due to increased deposition rate per unit time, availability of reacting atoms near the interface, and melting of base metal, respectively. Hardness variation of the brazed joints revealed that base metal was prone to failure due to comparatively higher hardness as well as improved resistance to failure of HAZ (due to the formation of acicular ferrite) and deposited bead (due to dispersion hardening). In addition, Fe, Al, and Cu were the main constituents of intermetallic layer and dispersive phases in the bead. IMC layer was harder in the case of Braze+ torch due to comparatively higher Fe content. Two modes of failure namely interface (brittle features) and base metal (ductile features) were observed during shear-tensile testing.

References

1.
Matlock
,
D.
, and
Speer
,
J.
,
2009
, “Third Generation of AHSS: Microstructure Design Concepts,”
Microstructure and Texture in Steels
,
A
Haldar
,
S
Suwas
, and
D
Bhattacharjee
, eds.,
Springer
,
London
, pp.
185
205
.
2.
Mathis
,
K.
,
Krajnak
,
T.
,
Kuzel
,
R.
, and
Gubicza
,
J.
,
2011
, “
Structure and Mechanical Behaviour of Interstitial-Free Steel Processed by Equal-Channel Angular Pressing
,”
J. Alloy. Compd.
,
509
(
8
), pp.
3522
3525
. 10.1016/j.jallcom.2010.12.142
3.
Schram
,
A.
,
Masendorf
,
R.
,
Medhurst
,
T.
, and
Wiche
,
H.
,
2008
, “
Manufacturing and Fatigue Strength of Brazed, Locally Hardened Structures
,”
Steel Res. Int.
,
79
(
3
), pp.
219
224
. 10.1002/srin.200806344
4.
Norrish
,
J.
,
2017
, “
Recent gas Metal arc Welding (GMAW) Process Developments: The Implications Related to International Fabrication Standards
,”
Weld. World
,
61
(
4
), pp.
755
767
. 10.1007/s40194-017-0463-8
5.
Guimaraes
,
A. S.
,
Mendes
,
M. T.
,
Costa
,
H. R. M.
,
Machado
,
J. D. S.
, and
Kuromoto
,
N. K.
,
2007
, “
An Evaluation of the Behavior of a Zinc Layer on a Galvanized Sheet Joined by MIG Brazing
,”
Weld. Int.
,
21
(
4
), pp.
271
278
. 10.1080/09507110701411908
6.
Chovet
,
C.
, and
Guiheux
,
S.
,
2006
, “
Possibilities Offered by MIG and TIG Brazing of Galvanized Ultra High Strength Steels for Automotive Applications
,”
La Metall. Ital.
,
98
(
7
), pp.
47
54
.
7.
Iordachescu
,
D.
,
Quintino
,
L.
,
Miranda
,
R.
, and
Pimenta
,
G.
,
2006
, “
Influence of Shielding Gases and Process Parameters on Metal Transfer and Bead Shape in MIG Brazed Joints of the Thin Zinc-Coated Steel Plates
,”
Mater. Des.
,
27
(
5
), pp.
381
390
. 10.1016/j.matdes.2004.11.010
8.
Winthes
,
E.
,
DiGiovanni
,
C.
,
He
,
L.
,
Bag
,
S.
,
Goodwin
,
F.
,
Biro
,
E.
, and
Zhou
,
Y.
,
2019
, “
Effect of Multiple Pulse Resistance Spot Welding Schedules on Liquid Metal Embrittlement Severity
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101001
. 10.1115/1.4044099
9.
Deng
,
L.
,
Lou
,
M.
,
Li
,
Y.
, and
Carlson
,
B. E.
,
2019
, “
Thermally Assisted Self-Piercing Riveting of AA6061-T6 to Ultrahigh Strength Steel
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101006
. 10.1115/1.4044255
10.
Enrique
,
P. D.
,
Momani
,
H. A.
,
DiGiovanni
,
C.
,
Jiao
,
Z.
,
Chan
,
K. R.
, and
Zhou
,
N. Y.
,
2019
, “
Evaluation of Electrode Degradation and Projection Weld Strength in the Joining of Steel Nuts to Galvanized Advanced High Strength Steel
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
104501
. 10.1115/1.4044253
11.
Hu
,
X.
,
Zou
,
G.
,
Dong
,
S. J.
,
Lee
,
M. Y.
,
Jung
,
J. P.
, and
Zhou
,
Y.
,
2010
, “
Effects of Steel Coatings on Electrode Life in Resistance Spot Welding of Galvannealed Steel Sheets
,”
Mater. Trans.
,
51
(
12
), pp.
2236
2242
. 10.2320/matertrans.M2010239
12.
Kondo
,
M.
,
Konishi
,
T.
,
Nomura
,
K.
, and
Kokawa
,
H.
,
2010
, “
Degradation Mechanism of Electrode tip During Alternate Resistance Spot Welding of Zinc Coated and Uncoated Steel Sheets
,”
Sci. Technol. Weld. Joining
,
15
(
1
), pp.
76
80
. 10.1179/136217109X12577814486656
13.
Reisgen
,
U.
,
Angerhausen
,
M.
,
Pipinikas
,
A.
,
Twiehaus
,
T.
,
Wesling
,
V.
, and
Barthelmie
,
J.
,
2017
, “
The Effect of Arc Brazing Process Parameters on the Microstructure and Mechanical Properties of High-Strength Steel HCT780XD Using the Copper-Based Filler Metal CuAl8
,”
J. Mater. Process. Technol.
,
249
, pp.
549
558
. 10.1016/j.jmatprotec.2017.06.040
14.
Wang
,
P.
,
Hu
,
S.
,
Shen
,
J.
, and
Liang
,
Y.
,
2017
, “
Characterization the Contribution and Limitation of the Characteristic Processing Parameters in Cold Metal Transfer Deposition of an Al Alloy
,”
J. Mater. Process. Technol.
,
245
, pp.
122
133
. 10.1016/j.jmatprotec.2017.02.019
15.
Cao
,
R.
,
Yu
,
G.
,
Chen
,
J. H.
, and
Wang
,
P. C.
,
2013
, “
Cold Metal Transfer Joining Aluminum Alloys-to-Galvanized Mild Steel
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1753
1763
. 10.1016/j.jmatprotec.2013.04.004
16.
Singh
,
J.
,
Arora
,
K. S.
, and
Shukla
,
D. K.
,
2019
, “
Dissimilar MIG-CMT Weld-Brazing of Aluminium to Steel: A Review
,”
J. Alloy. Compd.
,
783
, pp.
753
764
. 10.1016/j.jallcom.2018.12.336
17.
Elrefaey
,
A.
,
Wojarski
,
L.
, and
Tillmann
,
W.
,
2012
, “
Evaluation of Corrosion Performance of Titanium/Steel Joint Brazed by Cu-Based Filler Metal
,”
J. Mater. Eng. Perform.
,
21
(
5
), pp.
707
713
. 10.1007/s11665-012-0149-8
18.
Singh
,
J.
,
Arora
,
K. S.
,
Shajan
,
N.
,
Shukla
,
D. K.
, and
Shome
,
M.
,
2019
, “
Role of Bead Shape and Dispersed Intermetallic Phases in Determining the Strength of CMT Brazed DP780 Lap Joints
,”
J. Manuf. Process.
,
44
, pp.
207
215
. 10.1016/j.jmapro.2019.06.007
19.
Koltsov
,
A.
, and
Cretteur
,
L.
,
2018
, “
Wetting and Interfacial Reactivity of Zn-Coated Steel Products With Cu–Si, Cu–Sn and Al-Si Filler Metals for Laser Brazing Application
,”
J. Mater. Eng. Perform.
,
27
(
10
), pp.
5002
5010
. 10.1007/s11665-018-3304-z
20.
Basak
,
S.
,
Pal
,
T. K.
, and
Shome
,
M.
,
2016
, “
High-Cycle Fatigue Behavior of MIG Brazed Galvanized DP600 Steel Sheet Joint-Effect of Process Parameters
,”
Int. J. Adv. Manuf. Tech.
,
82
(
5–8
), pp.
1197
1211
. 10.1007/s00170-015-7451-1
21.
Li
,
R. F.
,
Yu
,
Z. S.
,
Qi
,
K.
,
Zhou
,
F. M.
,
Wu
,
M. F.
, and
Yu
,
C.
,
2005
, “
Growth Mechanisms of Interfacial Compounds in Arc Brazed Galvanised Steel Joints With Cu97Si3 Filler
,”
Mater. Sci. Technol.
,
21
(
4
), pp.
483
487
. 10.1179/174328405X29294
22.
Sharma
,
A.
,
Lee
,
S. J.
,
Choi
,
D. Y.
, and
Jung
,
J. P.
,
2017
, “
Effect of Brazing Current and Speed on the Bead Characteristics, Microstructure, and Mechanical Properties of the Arc Brazed Galvanized Steel Sheets
,”
J. Mater. Process. Technol.
,
249
, pp.
212
220
. 10.1016/j.jmatprotec.2017.05.026
23.
Wang
,
K.
,
Upadhyay
,
P.
,
Wang
,
Y.
,
Li
,
J.
,
Sun
,
X.
, and
Roosendaal
,
T.
,
2018
, “
Investigation of Interfacial Layer for Friction Stir Scribe Welded Aluminum to Steel Joints
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111005
. 10.1115/1.4040873
24.
Yu
,
Z. S.
,
Li
,
R. F.
,
Zhou
,
F. M.
,
Wu
,
M. F.
,
Qi
,
K.
, and
Qian
,
Y. Y.
,
2004
, “
Joint Evolution and Strengthening Mechanisms in Arc Brazed Galvanised Steels With Cu97Si3 Filler
,”
Mater. Sci. Technol.
,
20
(
11
), pp.
1479
1483
. 10.1179/026708304225022133
25.
Makwana
,
P.
,
Shome
,
M.
,
Goecke
,
S.-F.
, and
De
,
A.
,
2016
, “
Gas Metal Arc Brazing of Galvannealed Steel Sheets
,”
Sci. Technol. Weld. Joining
,
21
(
7
), pp.
1
7
. 10.1080/13621718.2016.1145420
26.
Singh
,
J.
,
Arora
,
K. S.
,
Shajan
,
N.
,
Shome
,
M.
, and
Shukla
,
D. K.
,
2019
, “
Influence of Filler Wire Composition and Heat Input on Microstructure and Strength of CMT Brazed DP Steel Joints
,”
Mater. Res. Express
,
6
(
11
), p.
116551
. 10.1088/2053-1591/ab4835
27.
Makwana
,
P.
,
Shome
,
M.
,
Goecke
,
S.-F.
, and
De
,
A.
,
2017
, “
Wetting Length in Gas Metal Arc Brazing of Galvanized Steel
,”
Sci. Technol. Weld. Joining
,
22
(
2
), pp.
166
169
. 10.1080/13621718.2016.1207289
28.
Saxton
,
H. J.
,
West
,
A. J.
, and
Barrett
,
C. R.
,
1971
, “
Deformation and Failure of Brazed Joints −Macroscopic Considerations
,”
Metall. Trans.
,
2
(
4
), pp.
999
1007
. 10.1007/BF02664231
29.
Basak
,
S.
,
Pal
,
T. K.
,
Shome
,
M.
, and
Maity
,
J.
,
2013
, “
GMA Brazing of Galvannealed Interstitial-Free Steel
,”
Weld. J.
,
92
(
2
), pp.
29
35
.
30.
Silvayeh
,
Z.
,
Vallant
,
R.
,
Sommitsch
,
C.
,
Gotzinger
,
B.
,
Karner
,
W.
, and
Hartmann
,
M.
,
2017
, “
Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks
,”
Metall. Mater. Trans. A
,
48
(
11
), pp.
5376
5386
. 10.1007/s11661-017-4277-5
31.
Agudo
,
L.
,
Eyidi
,
D.
,
Schmaranzer
,
C. H.
,
Arenholz
,
E.
,
Jank
,
N.
,
Bruckner
,
J.
, and
Pyzalla
,
A. R.
,
2007
, “
Intermetallic FexAly-Phases in a Steel/Al-Alloy Fusion Weld
,”
J. Mater. Sci.
,
42
(
12
), pp.
4205
4214
. 10.1007/s10853-006-0644-0
32.
Varol
,
F.
,
Ferik
,
E.
,
Ozsarac
,
U.
, and
Aslanlar
,
S.
,
2013
, “
Influence of Current Intensity and Heat Input in Metal Inert Gasbrazed Joints of TRIP 800 Thin Zinc Coated Steel Plates
,”
Mater. Des.
,
52
, pp.
1099
1105
. 10.1016/j.matdes.2013.06.054
33.
Basak
,
S.
,
Das
,
H.
,
Pal
,
T. K.
, and
Shome
,
M.
,
2016
, “
Characterization of Intermetallics in Aluminum to Zinc Coated Interstitial Free Steel Joining by Pulsed MIG Brazing for Automotive Application
,”
Mater. Charact.
,
112
, pp.
229
237
. 10.1016/j.matchar.2015.12.030
You do not currently have access to this content.