Although the effectiveness of spindle speed variation (SSV) method in chatter suppression has been extensively reported, the determination of optimal SSV parameters remains a challenge owing to the difficulties in obtaining accurate modal parameters especially under varying cutting conditions. This paper proposes a closed-loop SSV cutting system to suppress chatter in turning. The dimensionless SSV amplitude is adaptively adjusted with a model-free controller to accommodate change of the chatter level. The wavelet packet entropy (WPE) is computed online to evaluate quantitatively the machining state, and a predetermined chatter threshold is used to calculate the controller input. Energy-based analysis of SSV parameters effect on chatter shows that the amplitude is the more dominant parameter than the frequency. Then we introduce the scheme of the proposed chatter suppression system, where the Bootstrap method is adopted to determine the threshold value. Next, the feasibility of the proposed method for chatter suppression is tested by simulations with different cutting depths. Finally, comparisons of experimental results verify the conclusion of theoretical analysis about the effect of SSV parameters, and two cutting tests with diverse activating strategies are performed to validate the effectiveness of the proposed system for chatter suppression in turning.

References

1.
Comak
,
A.
,
Ozsahin
,
O.
, and
Altintas
,
Y.
,
2016
, “
Stability of Milling Operations With Asymmetric Cutter Dynamics in Rotating Coordinates
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081004
.
2.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
785
808
.
3.
Siddhpura
,
M.
, and
Paurobally
,
R.
,
2012
, “
A Review of Chatter Vibration Research in Turning
,”
Int. J. Mach. Tool. Manuf.
,
61
(
1
), pp.
27
47
.
4.
Niu
,
J.
,
Ding
,
Y.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2017
, “
Mechanics and Multi-Regenerative Stability of Variable Pitch and Variable Helix Milling Tools Considering Runout
,”
Int. J. Mach. Tool. Manuf.
,
123
, pp.
129
145
.
5.
Zhang
,
Z.
,
Li
,
H.
,
Meng
,
G.
, and
Ren
,
S.
,
2017
, “
Milling Chatter Suppression in Viscous Fluid: A Feasibility Study
,”
Int. J. Mach. Tool. Manuf.
,
120
, pp.
20
26
.
6.
Bediaga
,
I.
,
Muñoa
,
J.
,
Hernández
,
J.
, and
Lacalle
,
L. N. L. D.
,
2009
, “
An Automatic Spindle Speed Selection Strategy to Obtain Stability in High-Speed Milling
,”
Int. J. Mach. Tool. Manuf.
,
49
(
5
), pp.
384
394
.
7.
Wang
,
C.
,
Zhang
,
X.
,
Liu
,
Y.
,
Cao
,
H.
, and
Chen
,
X.
,
2018
, “
Stiffness Variation Method for Milling Chatter Suppression Via Piezoelectric Stack Actuators
,”
Int. J. Mach. Tool. Manuf.
,
124
, pp.
53
66
.
8.
Albertelli
,
P.
,
Musletti
,
S.
,
Leonesio
,
M.
,
Bianchi
,
G.
, and
Monno
,
M.
,
2012
, “
Spindle Speed Variation in Turning: Technological Effectiveness and Applicability to Real Industrial Cases
,”
Int. J Adv. Manuf. Technol.
,
62
(
1–4
), pp.
59
67
.
9.
Barrenetxea
,
D.
,
Marquinez
,
J. I.
,
Bediaga
,
I.
, and
Uriarte
,
L.
,
2009
, “
Continuous Workpiece Speed Variation (CWSV): Model Based Practical Application to Avoid Chatter in Grinding
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
319
322
.
10.
Yilmaz
,
A.
,
Al-Regib
,
E.
, and
Ni
,
J.
,
2002
, “
Machine Tool Chatter Suppression by Multilevel Random Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
208
216
.
11.
Lin
,
S. C.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
1990
, “
The Effects of Variable Speed Cutting on Vibration Control in Face Milling
,”
ASME J. Eng. Ind.
,
112
(
1
), pp.
1
11
.
12.
Niu
,
J.
, and
Ding
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2016
, “
Stability Analysis of Milling Processes With Periodic Spindle Speed Variation Via the Variable-Step Numerical Integration Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
114501
.
13.
Urbikain
,
G.
,
Olvera
,
D.
,
Lacalle
,
L. N. L. D.
, and
Elías-Zúñiga
,
A.
,
2016
, “
Spindle Speed Variation Technique in Turning Operations: Modeling and Real Implementation
,”
J. Sound Vib.
,
383
, pp.
384
396
.
14.
Ding
,
Y.
,
Niu
,
J.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2016
, “
Numerical Integration Method for Stability Analysis of Milling With Variable Spindle Speeds
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011010
.
15.
Al-Regib
,
E.
,
Ni
,
J.
, and
Lee
,
S.-H.
,
2003
, “
Programming Spindle Speed Variation for Machine Tool Chatter Suppression
,”
Int. J. Mach. Tool. Manuf.
,
43
(
12
), pp.
1229
1240
.
16.
Stepan
,
G.
,
Kiss
,
A. K.
,
Ghalamchi
,
B.
,
Sopanen
,
J.
, and
Bachrathy
,
D.
,
2017
, “
Chatter Avoidance in Cutting Highly Flexible Workpieces
,”
CIRP Ann. Manuf. Technol.
,
66
(
1
), pp.
377
380
.
17.
Hajikolaei
,
K. H.
,
Moradi
,
H.
,
Vossoughi
,
G.
, and
Movahhedy
,
M. R.
,
2010
, “
Spindle Speed Variation and Adaptive Force Regulation to Suppress Regenerative Chatter in the Turning Process
,”
J. Manuf. Processes
,
12
(
2
), pp.
106
115
.
18.
Insperger
,
T.
, and
Stepan
,
G.
,
2004
, “
Stability Analysis of Turning With Periodic Spindle Speed Modulation Via Semidiscretization
,”
J. Vib. Control
,
10
(
12
), pp.
1835
1855
.
19.
Jayaram
,
S.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
,
2000
, “
Analytical Stability Analysis of Variable Spindle Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
391
397
.
20.
Alvarez
,
J.
,
Zatarain
,
M.
,
Marquinez
,
J. I.
,
Ortega
,
N.
, and
Gallego
,
I.
,
2013
, “
Avoiding Chatter in Traverse Cylindrical Grinding by Continuous Workpiece Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051011
.
21.
Soliman
,
E.
, and
Ismail
,
F.
,
1997
, “
Chatter Suppression by Adaptive Speed Modulation
,”
Int. J. Mach. Tool. Manuf.
,
37
(
3
), pp.
355
369
.
22.
Zhang
,
H.
, and
Ni
,
J.
,
2010
, “
Internal Energy Based Analysis on Mechanism of Spindle Speed Variation for Regenerative Chatter Control
,”
J. Vib. Control
,
16
(
2
), pp.
281
301
.
23.
Sun
,
Y.
, and
Xiong
,
Z.
,
2016
, “
An Optimal Weighted Wavelet Packet Entropy Method With Application to Real-Time Chatter Detection
,”
IEEE/ASME Trans. Mech.
,
21
(
4
), pp.
2004
2014
.
24.
Jemielniak
,
K.
, and
Widota
,
A.
,
1984
, “
Suppression of Self-Excited Vibration by the Spindle Speed Variation Method
,”
Int. J. Mach. Tool Des. Res.
,
24
(
3
), pp.
207
214
.
25.
Wu
,
D.
, and
Chen
,
K.
,
2010
, “
Chatter Suppression in Fast Tool Servo-Assisted Turning by Spindle Speed Variation
,”
Int. J. Mach. Tool. Manuf.
,
50
(
12
), pp.
1038
1047
.
26.
Molnár
,
T. G.
,
Insperger
,
T.
,
Hogan
,
S. J.
, and
Stépán
,
G.
,
2016
, “
Estimation of the Bistable Zone for Machining Operations for the Case of a Distributed Cutting-Force Model
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051008
.
27.
Urbikain
,
G.
,
Lacalle
,
L. N. L. D.
, and
Fernández
,
A.
,
2014
, “
Regenerative Vibration Avoidance Due to Tool Tangential Dynamics in Interrupted Turning Operations
,”
J. Sound Vib.
,
333
(
17
), pp.
3996
4006
.
28.
Zhang
,
H.
,
1996
, “
Chatter Modeling, Analysis and Control for CNC Machining Systems
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
29.
Otto
,
A.
, and
Radons
,
G.
,
2013
, “
Application of Spindle Speed Variation for Chatter Suppression in Turning
,”
J. Manuf. Sci. Technol.
,
6
(
2
), pp.
102
109
.
30.
Radulescu
,
R.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
,
1997
, “
An Investigation of Variable Spindle Speed Face Milling for Tool-Work Structures With Complex Dynamics—Part 2: Physical Explanation
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
273
280
.
31.
Ang
,
K. H.
,
Chong
,
G.
, and
Li
,
Y.
,
2005
, “
PID Control System Analysis, Design, and Technology
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
559
576
.
32.
McCarthy
,
M. W.
,
1992
, “
An Investigation of the On-Line Implementation of Variable Speed Machining for Vibration Suppression in Face Milling
,” Master's thesis, University of Illinois at Urbana-Champaign, Urbana, MI.
33.
Yao
,
Z.
,
Mei
,
D.
, and
Chen
,
Z.
,
2010
, “
On-Line Chatter Detection and Identification Based on Wavelet and Support Vector Machine
,”
J. Mater. Process Technol.
,
210
(
5
), pp.
713
719
.
34.
Al-Regib
,
E.
, and
Ni
,
J.
,
2010
, “
Chatter Detection in Machining Using Nonlinear Energy Operator
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
3
), pp.
333
342
.
35.
Gradišek
,
J.
,
Baus
,
A.
,
Govekar
,
E.
,
Klocke
,
F.
, and
Grabec
,
I.
,
2003
, “
Automatic Chatter Detection in Grinding
,”
Int. J. Mach. Tool. Manuf.
,
43
(
14
), pp.
1397
1403
.
36.
Tsai
,
N. C.
,
Chen
,
D. C.
, and
Lee
,
R. M.
,
2010
, “
Chatter Prevention for Milling Process by Acoustic Signal Feedback
,”
Int. J. Adv. Manuf. Technol.
,
47
(
9–12
), pp.
1013
1021
.
37.
Cao
,
H.
,
Zhou
,
K.
,
Chen
,
X.
, and
Zhang
,
X.
,
2017
, “
Early Chatter Detection in End Milling Based on Multi-Feature Fusion and 3σ Criterion
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
4387
4397
.
38.
Dehay
,
D.
,
Dudek
,
A. E.
, and
Badaoui
,
M. E.
,
2018
, “
Bootstrap for Almost Cyclostationary Processes With Jitter Effect
,”
Digital Signal Process.
,
73
, pp.
93
105
.
You do not currently have access to this content.