Impact welding is a material processing technology that enables metallurgical bonding in the solid state using a high-speed oblique collision. In this study, the effects of thickness of the flier and collision angle on weld interface morphology were investigated through the vaporizing foil actuator welding (VFAW) of AA1100-O to AISI 1018 Steel. The weld interfaces at various controlled conditions show wavelength increasing with the flier thickness and collision angle. The AA1100-O flier sheets ranged in thickness from 0.127 to 1.016 mm. The velocity of the fliers was directly measured by in situ photon Doppler velocimetry (PDV) and kept nearly constant at 670 m/s. The collision angles were controlled by a customized steel target with a set of various collision angles ranging from 8 deg to 28 deg. A numerical solid mechanics model was optimized for mesh sizes and provided to confirm the wavelength variation. Temperature estimates from the model were also performed to predict local melting and its complex spatial distribution near the weld interface and to compare that prediction to experiments.

References

1.
Martinsen
,
K.
,
Hu
,
S. J.
, and
Carlson
,
B. E.
,
2015
, “
Joining of Dissimilar Materials
,”
CIRP Ann.
,
64
(
2
), pp.
679
699
.
2.
Nandan
,
R.
,
DebRoy
,
T.
, and
Bhadeshia
,
H. K. D. H.
,
2008
, “
Recent Advances in Friction-Stir Welding–Process, Weldment Structure and Properties
,”
Prog. Mater. Sci.
,
53
(
6
), pp.
980
1023
.
3.
Cowan
,
G. R.
,
Bergmann
,
O. R.
, and
Holtzman
,
A. H.
,
1971
, “
Mechanism of Bond Zone Wave Formation in Explosion-Clad Metals
,”
Metall. Mater. Trans. B
,
2
(
11
), pp.
3145
3155
.
4.
Hansen
,
S. R.
,
Vivek
,
A.
, and
Daehn
,
G. S.
,
2015
, “
Impact Welding of Aluminum Alloys 6061 and 5052 by Vaporizing Foil Actuators: Heat-Affected Zone Size and Peel Strength
,”
ASME J. Manuf. Sci. Eng.
,
137
(
5
), p.
051013
.
5.
Zhang
,
Y.
,
Babu
,
S. S.
,
Prothe
,
C.
,
Blakely
,
M.
,
Kwasegroch
,
J.
,
LaHa
,
M.
, and
Daehn
,
G. S.
,
2011
, “
Application of High Velocity Impact Welding at Varied Different Length Scales
,”
J. Mater. Process. Technol.
,
211
(
5
), pp.
944
952
.
6.
Jaramillo
,
D.
,
Szecket
,
A.
, and
Inal
,
O. T.
,
1987
, “
On the Transition From a Waveless to a Wavy Interface in Explosive Welding
,”
Mater. Sci. Eng.
,
91
, pp.
217
222
.
7.
Hunt
,
J. N.
,
1968
, “
Wave Formation in Explosive Welding
,”
Philos. Mag.
,
17
(
148
), pp.
669
680
.
8.
Blazynski
,
T. Z.
,
2012
,
Explosive Welding, Forming and Compaction
,
Springer Science & Business Media
, Essex, UK.
9.
Ben-Artzy
,
A.
,
Stern
,
A.
,
Frage
,
N.
,
Shribman
,
V.
, and
Sadot
,
O.
,
2010
, “
Wave Formation Mechanism in Magnetic Pulse Welding
,”
Int. J. Impact Eng.
,
37
(
4
), pp.
397
404
.
10.
Reid
,
S. R.
,
1974
, “
A Discussion of the Mechanism of Interface Wave Generation in Explosive Welding
,”
Int. J. Mech. Sci.
,
16
(
6
), pp.
399
413
.
11.
Vivek
,
A.
,
Liu
,
B. C.
,
Hansen
,
S. R.
, and
Daehn
,
G. S.
,
2014
, “
Accessing Collision Welding Process Window for Titanium/Copper Welds With Vaporizing Foil Actuators and Grooved Targets
,”
J. Mater. Process. Technol.
,
214
(
8
), pp.
1583
1589
.
12.
Vivek
,
A.
,
Hansen
,
S. R.
,
Liu
,
B. C.
, and
Daehn
,
G. S.
,
2013
, “
Vaporizing Foil Actuator: A Tool for Collision Welding
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2304
2311
.
13.
Johnson
,
J. R.
,
Taber
,
G.
,
Vivek
,
A.
,
Zhang
,
Y.
,
Golowin
,
S.
,
Banik
,
K.
,
Fenton
,
G. K.
, and
Daehn
,
G. S.
,
2009
, “
Coupling Experiment and Simulation in Electromagnetic Forming Using Photon Doppler Velocimetry
,”
Steel Res. Int.
,
80
(
5
), pp.
359
365
.
14.
Jaramillov
,
D.
,
Inal
,
O. T.
, and
Szecket
,
A.
,
1987
, “
Effect of Base Plate Thickness on Wave Size and Wave Morphology in Explosively Welded Couples
,”
J. Mater. Sci.
,
22
(
9
), pp.
3143
3147
.
15.
Fathipour
,
M.
,
Hamedi
,
M.
, and
Yousefi
,
R.
,
2013
, “
Numerical and Experimental Analysis of Machining of Al (20 vol% SiC) Composite by the use of ABAQUS Software
,”
Mater. Sci. Eng. Technol.
,
44
(1), pp.
14
20
.
16.
List
,
G.
,
Sutter
,
G.
, and
Bouthiche
,
A.
,
2012
, “
Cutting Temperature Prediction in High Speed Machining by Numerical Modelling of Chip Formation and its Dependence With Crater Wear
,”
Int. J. Mach. Tools Manuf.
,
54–55
, pp.
1
9
.
17.
Pourali
,
M.
,
Abdollah-zadeh
,
A.
,
Saeid
,
T.
, and
Kargar
,
F.
,
2017
, “
Influence of Welding Parameters on Intermetallic Compounds Formation in Dissimilar Steel/Aluminum Friction Stir Welds
,”
J. Alloys Compd.
,
715
, pp.
1
8
.
18.
Shewmon
,
P. G.
,
1968
, Diffusion in Solids, Springer International Publishers, Cham Switzerland.
19.
Godunov
,
S. K.
,
Deribas
,
A. A.
,
Zabrodin
,
A. V.
, and
Kozin
,
N. S,
,
1970
, “
Hydrodynamic Effects in Colliding Solids
,”
J. Comput. Phys.
,
5
(3), pp.
517
539
.
You do not currently have access to this content.